• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Abel Niels Henrik

Dizionario delle Scienze Fisiche (1996)
  • Condividi

Abel Niels Henrik


Abel 〈àabel〉 Niels Henrik [STF](Findö 1802 - Froland 1829) Matematico norvegese. ◆ [ANM] Condizione, o criterio, di convergenza di A.: (a) se Σnan converge e bn è una successione monotona limitata, allora ∑nanbn è convergente; (b) se ∫α∞ f(x,y)dx converge uniformemente in un insieme X e se g(x,y) è monotona per x ∈[α, ∞] e uniformemente limitata in X, allora ∫α∞ f(x,y)g(x,y)dx è uniformemente convergente in x. ◆ [ANM] Disuguaglianza di A.: date le due successioni finite di numeri aK e bK, con K=1,...,n, se aK è monotona e BK=b₁+...+bK è tale che |BK|≤B, allora |ΣK=1K=naKbK|≤B(|a₁|+2|an|). ◆ [ANM] Equazioni integrali di A.: classe di equazioni integrali del tipo di Volterra: v. equazioni integrali: II 476 d; tali equazioni intervengono, per es., nello studio del moto di un corpo che cade in un campo gravitazionale. ◆ [ANM] Somma alla A.: v. trasformazione integrale: VI 297 e. ◆ [ANM] Sommabilità alla A.: v. analisi armonica: I 126 d. ◆ [ANM] Teorema di A.: v. Riemann, superfici di: V 6 a. ◆ [ANM] Teoremi di A.: v. analisi armonica: I 126 e.

Vedi anche
Leopold Kronecker Kronecker ‹króonekër›, Leopold. - Matematico (Liegnitz 1823 - Berlino 1891); discepolo di E. E. Kummer e di G. Dirichlet; prof. nell'univ. di Berlino (1883), direttore del Journal für reine und angewandte Mathematik (1881). Socio straniero dei Lincei (1883). Fu uno dei più insigni algebristi del sec. ... Paolo Ruffini Matematico e medico (Valentano 1765 - Modena 1822). Trascorse a Modena quasi tutta la sua vita, e in quella università fu professore dal 1797 alla morte con la sola interruzione di un anno (1798), allorché fu dimesso dalla cattedra per non aver voluto prestare il giuramento civico richiesto dalla Repubblica ... Karl Gustav Jacob Jacobi Matematico (Potsdam 1805 - Berlino 1851). Uno tra i protagonisti degli studi matematici del 19° secolo, fornì imprescindibili contributi allo studio delle funzioni ellittiche; il suo nome è ricordato per i metodi di integrazione delle funzioni definite da sistemi di n equazioni, che hanno avuto notevoli ... Karl Theodor Wilhelm Weierstrass Weierstrass ‹vàiërštraas›, Karl Theodor Wilhelm. - Matematico (Osterfeld, Münster, 1815 - Berlino 1897). Prof. all'univ. di Berlino, membro dell'Accademia di Berlino,  fu celebrato dai matematici contemporanei come il più grande analista vivente. Portano il suo nome molti teoremi sia nell'analisi infinitesimale, ...
Categorie
  • ANALISI MATEMATICA in Matematica
  • FISICA MATEMATICA in Fisica
  • STORIA DELLA FISICA in Fisica
Tag
  • SUCCESSIONE MONOTONA
  • VOLTERRA
Altri risultati per Abel Niels Henrik
  • Abel, Niels Henrik
    Enciclopedia on line
    Matematico norvegese (Findö 1802 - Froland 1829), la cui opera è stata determinante nello sviluppo della matematica moderna. Fu sostanzialmente un autodidatta; nel 1825-26, grazie a una pensione governativa, soggiornò a Berlino e a Parigi; tornato in patria, ebbe un modesto incarico d'insegnamento. ...
  • ABEL, Niels Henrik
    Enciclopedia Italiana (1929)
    Matematico norvegese, nato a Findö il 5 agosto 1802, morto a Froland il 6 aprile 1829. Durante la breve vita, travagliata della povertà e dalla malferma salute, poté compiere opere mirabili che gli assicurarono fama duratura. Fu un autodidatta. Sulle opere dei grandi matematici (specie Eulero e Lagrangia), ...
Vocabolario
abeliano
abeliano agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali