• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

PICARD, Charles-Émile

Enciclopedia Italiana (1935)
  • Condividi

PICARD, Charles-Émile


Matematico, nato a Parigi il 24 luglio 1856. Professore all'università di Parigi, membro dell'Académie Française e segretario perpetuo dell'Académie des Sciences, il P. è tra i più eminenti analisti dei nostri tempi.

È del 1877 la sua prima memoria sui complessi di rette, concepita nell'indirizzo delle celebri lezioni del Darboux; a essa fa seguito una successione di ricerche nel campo della teoria delle funzioni. Nel 1878 e 1879 scoprì importanti teoremi sulla teoria delle funzioni intere e più generalmente delle funzioni analitiche uniformi. Il P. approfondisce il comportamento di una siffatta funzione nell'intorno di un punto singolare essenziale, conseguendo un progresso significante sui risultati già stabiliti da F. Casorati e C. Weierstrass. Un celebre teorema, che va sotto il suo nome, afferma che se a è un punto singolare essenziale isolato della funzione analitica uniforme f (z), l'equazione

ammette, in generale, infinite radici nell'intorno di a. Può accadere che ciò non sia al più per un valore eccezionale di k, senza di che la f (z) dovrebbe ridursi ad una costante.

A ragione E. Landau, cui si deve una notevole generalizzazione del teorema del P., afferma che tra le numerose scoperte, di cui il P. ha arricchito la scienza matematica, il teorema che porta il suo nome occupa il primo posto. Tra le ricerche cui il teorema ha dato luogo citiamo quelle di E. Borel, O. Blumenthal, E. Landau, F. Schottky e, più di recente, di G. Julia che è tra i maggiori discepoli del P.

È del P. la generalizzazione della classica equazione differenziale del Lamé, il cui integrale generale fu conseguito dall'Hermite. Le equazioni del P. costituiscono una particolare categoria di equazioni lineari a coefficienti doppiamente periodici.

Al P. si debbono ancora classiche ricerche generali sugl'integrali algebrici associati a una superficie algebrica e, in particolare, su quelli di differenziali totali. Un suo teorema, che è alla base di quest'importante dottrina, afferma che una superficie algebrica non ammette, in generale, integrali di differenziali totali di 1ª specie. Questi studî ebbero ulteriori, essenziali sviluppi in Italia, specialmente dal punto di vista geometrico, per opera di G. Castelnuovo, F. l'nriques, F. Severi.

È del P. il metodo delle approssimazioni successive nella teoria delle equazioni differenziali. Questo metodo, se pure già prima usato da G. Peano, è assurto nell'opera del P. a strumento sistematico di calcolo atto a stabilire l'esistenza degl'integrali e ha permesso di realizzare veri progressi nel campo delle equazioni alle derivate parziali oltre che in quello delle equazioni differenziali ordinarie. Altro titolo di gloria per il P. è la teoria delle equazioni differenziali lineari dal punto di vista analogo a quello di E. Galois per le equazioni algebriche. L'eminente geometra introduce per le equazioni differenziali il concetto, così fecondo, di gruppo, mostratosi essenziale per penetrare i misteri della bella teoria delle equazioni algebriche. Le ricerche del P. sono state proseguite da E. Vessiot, J. Drach, G. Frobenius, L. Koenigsberger, A. Loewy, ecc.

Oltre pubblicazioni di carattere filosofico e di natura varia, si debbono ricordare del P. il suo celebre Traité d'Analyse, in tre volumi (Parigi, 1ª ed. 1891-96; 3ª ed., 1925-28) e la Théorie des fonctions algébriques, in due volumi, in collaborazione con G. Simart (Parigi 1897-1906).

Vedi anche
Charles Hermite Hermite ‹ermìt›, Charles. - Matematico francese (Dieuze, Lorena, 1822 - Parigi 1901), uno dei più grandi analisti della seconda metà del sec. 19º. Ancora studente (1843-44), comunicò a C. G. J. Jacobi i risultati delle sue ricerche sulle funzioni abeliane e sulla trasformazione delle funzioni ellittiche. ... Évariste Galois Galois ‹ġalu̯à›, Évariste. - Matematico francese (Bourg-la-Reine 1811 - Parigi 1832); ancora studente, pubblicò lavori fondamentali sulle frazioni continue e su nuovi insiemi numerici (campi di Galois, Evariste) e presentò all'Accademia delle scienze di Parigi geniali lavori sulla risolubilità per radicali ... Federigo Enrìques Enrìques, Federigo. - Matematico, filosofo e storico della scienza italiano (Livorno 1871 - Roma 1946). È da considerarsi, insieme a G. Castelnuovo e a F. Severi, tra i fondatori della scuola italiana di geometria algebrica. Nel fervore di studi epistemologici del primo Novecento, fu rappresentante della ... applicazione matematica Il concetto di applicazione è una generalizzazione del concetto classico di funzione (➔ corrispondenza). Si parla di applicazione di un insieme P in un insieme Q, quando tra i due si stabilisce una corrispondenza del tipo seguente: a ogni elemento di P corrisponde un ben determinato elemento ...
Altri risultati per PICARD, Charles-Émile
  • Picard, Charles-Émile
    Enciclopedia on line
    Matematico (Parigi 1856 - ivi 1941), prof. nell'univ. di Parigi, membro (dal 1889) e presidente (1910) dell'Académie des sciences e (dal 1924) dell'Académie Française; socio straniero dei Lincei (1901), accademico pontificio dal 1936; uno dei più eminenti analisti dei primi del sec. 20º. Fra i molti ...
  • Picard Charles-Emile
    Dizionario delle Scienze Fisiche (1996)
    Picard 〈picàr〉 Charles-Émile [STF] (Parigi 1856 - ivi 1941) Prof. di analisi superiore nell'univ. di Parigi; socio straniero dei Lincei (1901). ◆ [ANM] Problema di P.: v. equazioni differenziali ordinarie nel campo reale: II 460 e. ◆ [ANM] Trasformazione di P.: v. trasformazione integrale: VI 297 f.
Vocabolario
emiliano
emiliano agg. e s. m. (f. -a) [dal lat. Aemilianus]. – Dell’Emilia, regione storica dell’Italia centro-settentr.: le città e.; parlare con accento e.; come sost., abitante o nativo dell’Emilia.
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali