• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

funzione abeliana

Enciclopedia della Matematica (2017)
  • Condividi

funzione abeliana


funzione abeliana in analisi, generalizzazione del concetto di funzione ellittica di una variabile complessa al caso di più variabili complesse. Una funzione meromorfa ƒ(z1, ..., zp) nello spazio complesso Cp è detta abeliana se esistono 2p vettori riga in Cp, wi = [w1i, …, wpi], con i = 1, ..., 2p linearmente indipendenti su R e tali che ƒ(z + wi) = ƒ(z) per ogni z ∈ Cp e i = 1, ..., 2p. I vettori wi sono i periodi dei sistemi di periodi della funzione abeliana ƒ(z). Tutti i periodi della funzione abeliana ƒ(z) formano un gruppo abeliano rispetto all’addizione. Lo studio delle funzioni abeliane cominciò nel xix secolo in relazione con il problema dell’inversione degli integrali abeliani (senza punti di singolarità). Le funzioni abeliane così ottenute sono dette funzioni abeliane speciali.

Vedi anche
Bernardino Gaetano Scòrza Matematico (Morano Calabro 1876 - Roma 1939). Prof. (dal 1912) di geometria nelle univ. di Cagliari, Parma, Catania, Napoli, e infine (dal 1935) di Roma, dove succedette a G. Castelnuovo nella cattedra di geometria; fu senatore e socio nazionale dei Lincei (1937). Partito da problemi di geometria algebrica, ... Karl Theodor Wilhelm Weierstrass Matematico (Osterfeld, Münster, 1815 - Berlino 1897). Prof. all'univ. di Berlino, membro dell'Accademia di Berlino,  fu celebrato dai matematici contemporanei come il più grande analista vivente. Portano il suo nome molti teoremi sia nell'analisi infinitesimale, sia nella teoria delle funzioni. Vita ... varietà Agraria Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine cultivar, che si riferisce a un’entità subordinata alla specie; con ciò fu abolito per le piante coltivate ... algebra Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. Con significato specifico è sinonimo di sistema ipercomplesso. La parola al-giabr è usata per la ...
Tag
  • LINEARMENTE INDIPENDENTI
  • FUNZIONE MEROMORFA
  • FUNZIONE ELLITTICA
  • GRUPPO ABELIANO
  • ADDIZIONE
Vocabolario
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
funzionare
funzionare v. intr. [dal fr. fonctionner, der. di fonction «funzione»] (io funzióno, ecc.; aus. avere). – 1. Adempiere la propria funzione, detto di congegni, e per estens. d’altre cose: funziona quest’orologio?; il motore oggi non vuol...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali