• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

geometria frattale

di Luca Tomassini - Enciclopedia della Scienza e della Tecnica (2008)
  • Condividi

geometria frattale

Luca Tomassini

Appellativo che si riferisce alle proprietà geometriche degli insiemi frattali e al loro studio. Il concetto di insieme frattale è stato originariamente introdotto da Benoît B. Mandelbrot per descrivere insiemi di punti dotati di dimensione di Hausdorff dH non intera. È questa una generalizzazione dell’ordinario concetto di dimensione spaziale. Con l’evolversi della teoria è stato introdotto il concetto di dimensione frattale, fondato sull’osservazione che il numero di sfere necessario a riempire una figura geometrica regolare (per es., nello spazio euclideo tridmensionale) sarà proporzionale al volume, ovvero a una lunghezza L elevata alla potenza 3 (la dimensione dello spazio ambiente). Se la figura è ‘frastagliata’ il numero di sfere necessario a ricoprirla e dunque anche la dimensione stessa potrebbero essere minori. È dunque lecito aspettarsi che estraendo il logaritmo di tale numero sia possibile ottenere una definizione alternativa di dimensione, coincidente con quella ordinaria nel caso di oggetti geometrici sufficientemente ‘lisci’. Formalmente, siano X un sottoinsieme limitato di uno spazio metrico M e per ogni ε>0 sia appunto N (X) il più piccolo numero di palle di raggio ε necessarie a ricoprire X. Si definisce dimensione frattale (o anche capacità e dimensione di Mandelbrot o di Shni­rel’man-Kolmogorov) di X il numero

formula

Notiamo che per ogni X si ha dH(X)≤dF(X); un insieme X può dunque avere dimensione di Hausdorff nulla e dimensione frattale diversa da zero, proprietà che rende quest’ultima preferibile. In un gran numero di casi è anche possibile caratterizzare un frattale facendo uso del concetto di (quasi)-autosimilarità. Intuitivamente, scegliendo una porzione comunque piccola di un frattale F e dilatandola fino a portarla alle dimensioni originarie di F si ottiene una figura coincidente in un senso opportuno con F stesso.

→ Frattali; Materia soffice; Turbolenza

Vedi anche
turbolenza Comportamento irregolare e impredicibile dei fluidi in certe condizioni. Il termine indica anche, in un contesto più vasto, il moto caotico presente in sistemi dinamici deterministici dissipativi con un attrattore strano nello spazio delle fasi (quindi anche in chimica, in ottica ecc.). Fisica In fluidodinamica, ... geometria In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. Cenni storiciL’antichità - L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque a scopi agrimensori nella zona del delta del Nilo); si trattava quindi essenzialmente di una g. empirica, ... ricorsività La proprietà di essere ricorsivo, cioè ricorrente. Teoria della r., o della ricorsione, o computabilità, la disciplina che si occupa di fornire una caratterizzazione matematica del concetto di algoritmo. Teoria della ricorsività La motivazione originaria per lo studio della r. fu soprattutto il problema ... numeri complessi Si chiama c. ogni numero della forma a + i b, essendo a e b due numeri reali relativi (positivi, negativi o anche nulli) e rappresentando il simbolo i (unità immaginaria o immaginario) la radice quadrata di −1; l’addendo a si chiama la parte reale, l’addendo i b la parte immaginaria, b il coefficiente ...
Categorie
  • STATISTICA E CALCOLO DELLE PROBABILITA in Matematica
  • TEMI GENERALI in Matematica
  • FISICA MATEMATICA in Fisica
Tag
  • DIMENSIONE DI HAUSDORFF
  • BENOÎT B. MANDELBROT
  • DIMENSIONE FRATTALE
  • SPAZIO EUCLIDEO
  • MATERIA SOFFICE
Altri risultati per geometria frattale
  • frattale
    Enciclopedia della Matematica (2017)
    frattale termine con cui si indicano oggetti geometrici (in particolare curve) dotati di alcune caratteristiche peculiari come l’autosomiglianza o autosimilarità e la dimensione frazionaria (da cui deriva il termine frattale, anche se a rigore sarebbe più corretto parlare di «dimensione reale») (→ dimensione ...
  • frattale
    Enciclopedia on line
    In matematica, termine coniato nel 1975 dal matematico francese B. Mandelbrot per indicare un particolare ente geometrico la cui forma è invariante nel cambiamento della scala delle lunghezze (proprietà di invarianza di scala): successivi ingrandimenti di piccole regioni dell’oggetto mostrano sempre ...
  • frattali
    Enciclopedia dei ragazzi (2005)
    Roberto Levi La matematica fra natura e arte «Perché la geometria viene spesso definita fredda e arida? Uno dei motivi è la sua incapacità di descrivere la forma di una nuvola, di una montagna, di una linea costiera, di un albero». Parola di Benoît Mandelbrot, il creatore della teoria dei frattali. ...
  • frattale
    Dizionario delle Scienze Fisiche (1996)
    frattale [agg. e s.m. Der. del fr. fractal (termine introdotto nel 1975 dal matematico fr. B. Mandelbrot), dal part. pass. fractus del lat. frangere "spezzare"] [ALG] Detto di particolari enti geometrici (oggetti f.) che possono essere caratterizzati dall'avere dimensione non intera (cioè frazionaria: ...
  • FRATTALI
    Enciclopedia Italiana - V Appendice (1992)
    Luigi Accardi Nicola Rosato Il termine ''frattale'' è stato introdotto da B. Mandelbrot nel saggio Les objects fractals (1975) per denotare una vasta classe di modelli matematici i quali, pur essendo noti da molti anni, erano poco studiati e soprattutto poco applicati alla descrizione dei fenomeni ...
Mostra altri risultati
Vocabolario
frattale
frattale agg. e s. m. [dal fr. fractal (termine introdotto nel 1975 dal matematico fr. B. Mandelbrot), der. del lat. fractus, part. pass. di frangĕre «spezzare» (v. fratto)]. – In matematica, denominazione di particolari enti geometrici...
geometrìa
geometria geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali