• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

gruppi di coomologia dei fasci

di Fabrizio Andreatta - Enciclopedia della Scienza e della Tecnica (2008)
  • Condividi

gruppi di coomologia dei fasci

Fabrizio Andreatta

Sia X uno spazio topologico. Dato una fascio F di gruppi abeliani su X, sia H0(X,F) il gruppo abeliano delle sezioni globali di F su X. Il funtore che associa a un fascio F il gruppo H0(X,F) è esatto a sinistra cioè se f:E→F è un morfismo iniettivo di fasci, l’applicazione indotta H0(X,F)→H0(X,F) è anch’essa iniettiva. Tale funtore non è però esatto a destra, ovvero se f è un morfismo suriettivo l’applicazione indotta H0(X,F)→H0(X,F) non è in generale suriettiva. Nella sua formulazione più matura in termini di funtori derivati universali, dovuta ad Alexander Grothendieck, la coomologia dei fasci ovvia a tale carenza fornendo per via astratta funtori che associano a F gruppi Hq(X,F), con q intero non negativo, soggetti alle seguenti due richieste. La prima richiesta è che, data una successione esatta di fasci 0→A→B→C→0, per ogni q risulti associato un omomorfismo Hq(X,C)→Hq+1(X,A) (‘funtorialmente’ in un senso che non andremo a precisare) tale che

0→H0(X,A)→H0(X,B)→H0(X,C)→H1(X,A)→

→H1(X,B)→H1(X,C)→H2(X,A)→...

ottenuta per funtorialità di Hq(Xi), sia una successione esatta di gruppi. Ricordiamo che, dati morfismi A0→A1→A2→A3→... di fasci o di gruppi, essi formano una successione esatta se il nucleo di Ai+1→Ai+2 coincide con l’immagine di Ai→Ai+1. In secondo luogo si chiede che esista una classe C di fasci tali che ogni fascio F ammetta un morfismo iniettivo F→G per un qualche G in C e Hq(X,G) si annulli per q positivo e G in C. Esempi di tali classi sono i fasci iniettivi o i fasci aciclici. Tale richiesta rende i funtori Hq(X,∙) essenzialmente unici. Concretamente sia dato un fascio F e sia data una successione esatta 0→F→G0→G1→... con Gi in C; l’esistenza di una tale successione è garantita dalla seconda proprietà. Si dimostra che Hq(X,F), per q positivo, coincide con il nucleo di H0(X,Gq)→H0(X,Gq+1) quozientato per l’immagine di H0(X,Gq−1). Tale approccio è tanto astratto quanto flessibile. Permette, per es., di ­ridimostrare il teorema di de Rham astratto per varietà o spazi analitici.

→ Geometria

Vedi anche
morfismo Ente matematico associato alle coppie di ‘oggetti’ di una data categoria. Si tratta di una nozione astratta e di grande generalità, che comprende come casi particolari molte nozioni classiche, come quelle di applicazione tra due insiemi, di omomorfismo tra due insiemi algebrici, di rappresentazione continua ... omomorfismo Corrispondenza tra due insiemi dotati di struttura algebrica, che sia comparabile con le operazioni definite negli insiemi. ● Dati due insiemi A e A′ provvisti di una struttura algebrica dello stesso tipo (per es., due gruppi o due anelli o due spazi vettoriali), si chiama omomorfismo di A in A′ (o, ... funtore In matematica, trasformazione di una categoria C in un’altra categoria D, definita da una coppia di ‘funzioni’, ϕ e ψ, tali che: a) se A, B, ... indicano ‘oggetti’ di C, ϕ(A), ϕ(B) ... sono ‘oggetti’ ben determinati di D; b) se g, h, ... sono ‘morfismi’ di C, ϕ (g), ϕ (h), ... sono ‘morfismi’ di D; c) ... applicazione matematica Il concetto di applicazione è una generalizzazione del concetto classico di funzione (➔ corrispondenza). Si parla di applicazione di un insieme P in un insieme Q, quando tra i due si stabilisce una corrispondenza del tipo seguente: a ogni elemento di P corrisponde un ben determinato elemento ...
Categorie
  • ALGEBRA in Matematica
  • GEOMETRIA in Matematica
Vocabolario
gruppo di acquisto solidale
gruppo di acquisto solidale loc. s.le m. Gruppo di persone che si organizza per acquistare insieme all’ingrosso prodotti alimentari o di uso comune, seguendo i principi di equità e solidarietà, con un atteggiamento critico nei confronti...
Gruppo di Visegrad
Gruppo di Visegrad (gruppo di Visegrad, Gruppo di Visegrád) loc. s.le m. Insieme di Stati dell’Europa centro-orientale, appartenenti all'ex blocco sovietico (Polonia, Ungheria, Cecoslovacchia; quest'ultima poi scissasi in Repubblica Ceca...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali