• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

gruppo simmetrico Sn

Enciclopedia della Matematica (2013)
  • Condividi

gruppo simmetrico Sn


gruppo simmetrico Sn o gruppo simmetrico su n elementi, gruppo delle permutazioni su un insieme di n elementi, rispetto all’operazione di composizione. Il gruppo simmetrico su n elementi ha cardinalità n! e ha per elemento neutro la permutazione corrispondente all’identità.

Indicando le permutazioni come prodotti dei cicli disgiunti che la compongono, i primi quattro gruppi simmetrici sono per esempio:

formula

Se n > 1, l’insieme delle permutazioni di classe pari forma un sottogruppo del gruppo simmetrico su n elementi, indicato con il simbolo An e detto gruppo alterno su n elementi (→ gruppo alterno An): esso è un sottogruppo normale di indice 2 di Sn e ha pertanto cardinalità n!/2. Al contrario delle permutazioni di classe pari, le permutazioni di classe dispari non formano un sottogruppo del gruppo simmetrico: oltre a non contenere l’elemento neutro (1), che è di classe pari, tale insieme non è neanche chiuso rispetto al prodotto (il prodotto di permutazioni di classe dispari è infatti pari).

Se n > 4, allora il gruppo alterno è semplice e non commutativo; questo implica che il gruppo simmetrico non è risolubile (→ gruppo): tale fatto è alla base del teorema di → Abel-Ruffini sulla risolubilità per radicali di una equazione algebrica.

Vedi anche
sottogruppo In matematica, insieme H di elementi di un gruppo G, tale che, mediante l’operazione di composizione definita in G, costituisce a sua volta un gruppo. In altre parole, H è s. di G se il ‘prodotto’ di due elementi qualunque di H, eseguito con la regola valida in G, è un elemento di H e se, insieme con ... permutazione Economia P. tributaria Trasformazione di un’imposta in un’altra con base diversa o diverso carattere ma di uguale peso, per es., di un’imposta sul reddito in un’imposta sul patrimonio e viceversa, o di un’imposta straordinaria una tantum in un’imposta ordinaria, o di un’imposta ordinaria sul patrimonio ... gruppo simplettico In matematica, il gruppo costituito dalle matrici s. di ordine 2n (simbolo Sp2n). Una matrice A di ordine 2n si chiama s. se risulta A*J=JA–1, ove J è la matrice di ordine 2n formata da n blocchi (01 –10) situati lungo la diagonale principale e A*, A–1 sono rispettivamente le matrici trasposta e inversa ... algebra Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. Con significato specifico è sinonimo di sistema ipercomplesso. La parola al-giabr è usata per la ...
Tag
  • TEOREMA DI → ABEL-RUFFINI
  • GRUPPO DELLE PERMUTAZIONI
  • EQUAZIONE ALGEBRICA
  • ELEMENTO NEUTRO
  • NON COMMUTATIVO
Vocabolario
simmètrico
simmetrico simmètrico agg. [dal gr. συμμετρικός, der. di συμμετρία «simmetria»] (pl. m. -ci). – 1. Che è in simmetria, che presenta simmetria (anche nel sign. più generico di tale termine): le due finestre non sono s. rispetto alla porta;...
gruppo
gruppo s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali