• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

jacobiano

Dizionario delle Scienze Fisiche (1996)
  • Condividi

jacobiano


jacobiano (o iacobiano) [agg. e s.m. Der. del cognome di K.G.J. Jacobi] [ALG] Curva j. (o, assolut., jacobiana s.f.): di un sistema lineare doppiamente infinito (rete) di curve algebriche piane λ₁f₁(x₁,x₂,x₃)+λ₂f₂(x₁,x₂,x₃)+λ₃f₃(x₁,x₂,x₃)=0 è il luogo dei punti doppi delle curve della rete. L'equazione della curva è J=0, ove J è il determinante j. (v. oltre) del sistema di polinomi f₁, f₂, f₃ rispetto alle tre variabili x₁, x₂, x₃. ◆ [ALG] Determinante j., o determinante funzionale (o, assolut., jacobiano s.m.): di un sistema di n funzioni di altrettante variabili, fk(x₁,x₂,...,xn), (k variabile da 1 a n), è il determinante della matrice quadrata di ordine n nella quale il k-esimo elemento della i-esima riga è la derivata parziale della k-esima funzione rispetto alla i-esima variabile, cioè della matrice (matrice j. del sistema):✄il simb. a sinistra ha la sua ragion d'essere nel fatto che lo j. può essere considerato in un certo senso la generalizzazione della derivata ordinaria, cui si riduce per n=1. L'annullarsi identico di J esprime che le fi sono legate tra di loro da una relazione (sono cioè funzionalmente dipendenti); se lo j. è invece diverso da zero in un certo campo, in esso le xi possono a loro volta essere determinate univocamente in funzione delle fk: xi=xi(f₁, f₂, ..., fn). Se il numero delle funzioni è diverso dal numero delle variabili, si parla ancora di matrice j. nel senso sopra precisato, ma non si può considerare il determinante jacobiano. In questo caso il rango della matrice j. fornisce indicazioni sulla dipendenza o indipendenza funzionale delle funzioni stesse.

Vedi anche
matrice anatomia Ammasso di cellule epiteliali alla cui attività si deve la formazione di un tessuto. matrice dell’unghia L’ammasso di cellule dello strato onicogeno che si osserva in corrispondenza della radice dell’unghia e della lunula, e alla cui opacità è dovuto il colorito biancastro di quest’ultima. matrice ... geometria In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. 1. Cenni storici 1.1 L’antichità. - L’origine della geometria è legata a concreti problemi di misurazione del terreno (nacque a scopi agrimensori nella zona del delta del Nilo); si trattava quindi essenzialmente ... tensore anatomia Muscolo volontario o involontario che ha la funzione di tendere un organo o una formazione anatomica: tensore del palato, contrae il palato molle; tensore del tarso, nell’orbita, comprime i punti lacrimali delle palpebre e la ghiandola lacrimale; tensore del timpano, nell’orecchio, distende ... varietà varietà agraria Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine cultivar, che si riferisce a un’entità subordinata alla specie; con ciò fu abolito per ...
Categorie
  • ALGEBRA in Matematica
Altri risultati per jacobiano
  • matrice jacobiana
    Enciclopedia della Matematica (2013)
    matrice jacobiana matrice che generalizza a funzioni di più variabili la nozione di derivata prima. Si consideri una funzione ƒ: Rn → Rm di n variabili reali, a valori vettoriali (il numero m di componenti di ƒ può essere diverso da quello n delle variabili indipendenti) e si supponga che tutte le componenti ...
  • matrice jacobiana
    Enciclopedia della Scienza e della Tecnica (2008)
    Luca Tomassini Generalizzazione al caso di funzioni di più variabili a valori vettoriali del concetto di derivata di una funzione scalare g:ℝ→ℝ. Più precisamente, si chiama matrice jacobiana J di una funzione (derivabile) f:ℝμ→ℝν la matrice definita dalla formula formula. La i-esima riga della matrice ...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali