• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Branges, Louis de

Enciclopedia on line
  • Condividi

Matematico francese naturalizzato statunitense (n. Parigi 1932). Laureatosi presso il Massachusetts institute of technology (1953), nel 1957 conseguì il PhD alla Cornell University e dal 1963 è professore alla Purdue University di Lafayette. Ha dato importanti contributi all'analisi, e in partic. all'analisi funzionale con lo studio di operatori limitati in uno spazio di Hilbert. Il suo nome è legato soprattutto all'importante dimostrazione della congettura di Bieberbach (1984), un passo fondamentale verso successivi tentativi di dimostrazione dell'ipotesi di B. Riemann relativa alla distribuzione nel piano complesso delle radici non banali della funzione zeta di Riemann sulla retta Re (z)=1/2. Nel 2002 ne ha annunciato una controversa dimostrazione; poi ha pubblicato (2004) una nuova proposta di dimostrazione. Tra le opere più significative: Square summable power series (in collab. con J. Rovnyak, 1966); Hilbert spaces of entire functions (1968); Underlying concepts in the proof of the Bieberbach conjecture (1988).

Vedi anche
David Hilbert Hilbert ‹hìlbërt›, David. - Matematico tedesco (Königsberg 1862 - Gottinga 1943). È la figura più notevole della matematica della prima metà del Novecento e forse dell'intero secolo. A Königsberg frequentò l'università con A. Hurwitz, già professore, e con H. Minkowski, suo condiscepolo. Dal 1895 al ... Bernhard Riemann Riemann ‹rìiman›, Bernhard. - Matematico tedesco (Breselenz, Hannover, 1826 - Selasca, presso Intra, 1866). Autore di fondamentali lavori, seppur non numerosi, che hanno aperto diversi campi di ricerca nella matematica moderna. In particolare nell'ambito dell' analisi, dei numeri primi e della geometria. ... matematica Insieme delle scienze che studiano in modo ipotetico-deduttivo entità astratte come i numeri e le misure: la matematica pura studia i problemi matematici indipendentemente dalla loro utilizzazione pratica; alla matematica applicata compete l’elaborazione di strumenti e modelli adatti agli scopi di altre ... funzionale In matematica, variabile y che dipende non da una o più variabili, ma da una funzione f; in simboli: y=F(f). Un funzionale non è da confondere con una funzione composta (o funzione di funzione): la y è funzionale di f(x), se la funzione stessa f(x) è concepita come una variabile, e a ogni scelta della ...
Categorie
  • BIOGRAFIE in Matematica
Tag
  • MASSACHUSETTS INSTITUTE OF TECHNOLOGY
  • ANALISI FUNZIONALE
  • CORNELL UNIVERSITY
  • SPAZIO DI HILBERT
  • PARIGI
Vocabolario
de
de 〈dé〉 prep. [lat. de]. – Forma che assume la prep. di quando è seguita dall’articolo, sia che si fonda con questo (del, dello, della, ecc.), sia che si scriva divisa (de ’l, de lo, de la, ecc.) come talvolta nell’uso letter. (è comune,...
de auditu
de auditu locuz. lat. – Espressione corrispondente all’ital. «per sentito dire»: riferire de auditu. Anche, «per avere udito direttamente», nell’espessione giuridica testimone de visu et de auditu (v. de visu).
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali