• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
256 risultati
Tutti i risultati [256]
Matematica [141]
Algebra [49]
Fisica [48]
Fisica matematica [39]
Storia della matematica [34]
Temi generali [28]
Analisi matematica [29]
Filosofia [25]
Geometria [20]
Statistica e calcolo delle probabilita [18]

Intuizionismo

Enciclopedia del Novecento (1978)

Intuizionismo AArend Heyting di Arend Heyting Intuizionismo sommario: 1. Concetti fondamentali.  2. Aritmetica elementare.  3. Il principio del terzo escluso. 4. I numeri reali. 5. Ineguaglianza e separazione [...] A, si possa decidere se A è una dimostrazione di aeS. Invece di ‛insieme' si usa il termine ‛specie'. Una specie è parti della matematica che sono state sviluppate nei dettagli sono: l'algebra (v. Heyting, 1941), l'analisi funzionale (v. Ashwinikumar, ... Leggi Tutto
TAGS: TEOREMA DI BOLZANO-WEIERSTRASS – PRINCIPIO DEL TERZO ESCLUSO – QUANTIFICATORE UNIVERSALE – LIMITE DI UNA SUCCESSIONE – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su Intuizionismo (3)
Mostra Tutti

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] si presta bene a essere trattata con tecniche algebriche, comprese serie formali, azioni di gruppi e lo studio delle algebre di incidenza di insiemi parzialmente ordinati. Tuttavia l'algebra compare in combinatoria in molti altri modi. Per ... Leggi Tutto
CATEGORIA: ALGEBRA

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] immersioni topologiche nello spazio tridimensionale di insiemi di nastri annodati, allacciati e avvolti a valori in una rappresentazione di un'algebra di Lie e il gruppo di Lie corrispondente a tale algebra è detto gruppo di gauge del campo. Nell' ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] di definire card(X) come la classe di equivalenza [X] di X nella relazione ∼ fra insiemi, cioè [2] card(X)=def la classe di tutti gli insiemi Y tali che X∼Y. Si deve notare che qui le nozioni di 'insieme fondamentali risultati in algebra, teoria dei ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La grande scienza. Fisica matematica: recenti sviluppi

Storia della Scienza (2003)

La grande scienza. Fisica matematica: recenti sviluppi Gianfausto Dell'Antonio Fisica matematica: recenti sviluppi La fisica matematica si può definire come la disciplina scientifica che si propone [...] la dinamica di un sistema di infinite particelle, si può cominciare a parlare di evoluzione di insiemi statistici e di algebre di operatori limitati associati a ogni regione limitata dello spazio-tempo, con naturali condizioni di inclusione e di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] Descartes (1596-1650), consiste nel tradurre le nozioni geometriche in nozioni algebriche. Dunque, per esempio, una curva algebrica piana C non è altro che l'insieme degli zeri di un polinomio P(x,y) di due variabili reali x e y: [1] C={(x,y)∈ℝ2 ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] è costituito dalla logica formale e dalla teoria degli insiemi. Le strutture sono classificate in ordine di complessità crescente. È così che all'inizio sono esaminate le strutture algebriche e topologiche, in seguito collegate. La retta dei numeri ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] Pn(C). Se g1, ..., gr sono polinomi omogenei di Z0, ..., Zn+1, allora i loro zeri comuni, cioè le soluzioni delle equazioni g1=0, ..., gr=0, (42) definiscono un insieme algebrico. Un insieme algebrico non singolare o regolare è una varietà complessa ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] coordinate ai punti, senza andare oltre. È ancora di là da venire il punto di vista che considera i coefficienti di un'equazione o di un sistema di equazioni algebriche come coordinate dell'insieme di punti che queste descrivono, e le equazioni come ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] di un insieme S si intende una famiglia F di insiemi aperti, tale che ogni punto di S sia contenuto in almeno uno di detti insiemi. teoria delle algebre di operatori. Dopo il lavoro di Hilbert e prima di quello di von Neumann sugli spazi di Hilbert, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 26
Vocabolario
àlgebra
algebra àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali