• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
16 risultati
Tutti i risultati [160]
Geometria [16]
Matematica [79]
Fisica [72]
Fisica matematica [35]
Algebra [35]
Temi generali [22]
Elettrologia [21]
Storia della fisica [21]
Analisi matematica [20]
Fisica nucleare [17]

Geometria

Enciclopedia Italiana - VI Appendice (2000)

Geometria Ryoichi Kobayashi e Luigi Ambrosio Giovanni Bellettini (XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391) Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e [...] 2] si ottiene una figura simmetrica rispetto al gruppo delle rotazioni intorno all'origine. Le traiettorie determinate dal campo vettoriale sono tutte circonferenze centrate nell'origine e il punto che rappresenta lo stato del pendolo ruota lungo una ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONE DIFFERENZIALE ORDINARIA – SCUOLA NORMALE SUPERIORE DI PISA – CARATTERISTICA DI EULERO – FUNZIONI DIFFERENZIABILI
Mostra altri risultati Nascondi altri risultati su Geometria (13)
Mostra Tutti

SISTEMI DINAMICI

Enciclopedia Italiana - VI Appendice (2000)

Sistemi dinamici Franco Magri Dmitrij Anosov Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] del toro solido, il cui enunciato è il seguente: se in ogni punto della frontiera del 'toro solido' D²3S¹ il campo vettoriale della velocità di fase è indirizzato verso l'interno del toro solido (oppure ovunque verso l'esterno) e non ci sono punti ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONI DIFFERENZIALI DEL MOTO – EQUAZIONI ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE LINEARE – TEORIA DELLE PERTURBAZIONI
Mostra altri risultati Nascondi altri risultati su SISTEMI DINAMICI (3)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] Quando si assegna un vettore o, più in generale, un tensore a ciascun punto di M, si ottiene un campo vettoriale o un campo tensoriale. Un campo di vettori covarianti si chiama anche una 1-forma (differenziale) o una forma pfaffiana in onore di J. F ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] 'analogo della prima classe di Chern, cioè dell'integrale della curvatura del fibrato vettoriale, si ottiene un intero. In effetti, i due campi vettoriali commutabili che generano lo spazio tangente per un 2-toro ordinario (commutativo) corrispondono ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] uno studente di Hopf, discusse una tesi sul problema di stabilire sotto quali condizioni una n-varietà ammette n campi vettoriali ovunque linearmente indipendenti, una ricerca che lo portò a studiare il fibrato di sfere di una varietà e ad associare ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

struttura di spin

Enciclopedia della Scienza e della Tecnica (2008)

struttura di spin Luca Tomassini Un fibrato principale π∼:P∼→M su una varietà n-dimensionale M con gruppo di struttura Spinn che sia ottenuto come ricoprimento di un qualche fibrato principale π [...] SOn su T*(M), il duale del fibrato tangente T(M) alla varietà M ossia lo spazio dei campi (regolari) di forme lineari sui campi vettoriali (regolari) di M. Similmente, si possono definire strutture di spin su varietà semi-riemanniane come per es. la ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA
TAGS: VARIETÀ RIEMANNIANA – COMPONENTE CONNESSA – DERIVATE COVARIANTI – VETTORI ORTONORMALI – FIBRATO VETTORIALE

curvatura scalare

Enciclopedia della Scienza e della Tecnica (2008)

curvatura scalare Luca Tomassini Sia Mν una varietà riemanniana regolare, ovvero una varietà C∞ sulla quale è specificato un campo tensoriale definito positivo g(x) (x indica qui un sistema di coordinate [...] locali), detto tensore metrico o metrica. Sia inoltre TMν lo spazio dei campi vettoriali regolari tangenti a Mν. La curvatura su Mν è normalmente caratterizzata in termini del tensore di (curvatura di) Riemann, un’applicazione multilineare R:TMν×TMν× ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: APPLICAZIONE MULTILINEARE – SIMBOLI DI CHRISTOFFEL – VARIETÀ RIEMANNIANA – DERIVATA COVARIANTE – TRASPORTO PARALLELO

varieta simplettiche

Enciclopedia della Scienza e della Tecnica (2008)

varietà simplettiche Luca Tomassini Una varietà differenziabile di dimensione pari M2n dotata di una struttura simplettica (o struttura hamiltoniana), ossia di una forma bilineare (o 2-forma) antisimmetrica [...] Yx∈Tx(M2n) (antisimmetria) e Φx(Xx,Yx)=0 per ogni Yx∈Tx(M2n) implica Xx=0 (non degenerazione). Inoltre, se X,Y sono due campi vettoriali regolari arbitrari su M2n con valori Xx,Yx∈Tx(M2n) nel punto x∈M2n, la funzione Φx(Yx,Xx) è assunta regolare. Per ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – MECCANICA HAMILTONIANA – SPAZIO DELLE FASI – PRODOTTO SCALARE – CAMPI VETTORIALI

rete

Enciclopedia on line

Insieme di linee, reali o ideali, che si intrecciano formando incroci e nodi e dando luogo a una struttura complessa. Più in particolare, infrastruttura tecnica per la distribuzione di un segnale (tipicamente [...] stazionario e pertanto è possibile utilizzare, al posto delle grandezze elettriche vettoriali che compaiono nelle equazioni di Maxwell (grandezze relative ai campi elettrici e magnetici), le grandezze scalari tensione e intensità di corrente legate ... Leggi Tutto
CATEGORIA: BIOINGEGNERIA – ECOLOGIA – GEOMETRIA – ANATOMIA – ORGANIZZAZIONI ISTITUZIONI E SALUTE PUBBLICA – ECOLOGIA ANIMALE E ZOOGEOGRAFIA – ISTITUZIONI – FILIERE STRUMENTI E TECNICHE DELLA PRODUZIONE INDUSTRIALE – ELABORATORI – EDILIZIA – STRUMENTI E TECNOLOGIA APPLICATA – TECNOLOGIA RADIOFONICA E TELEVISIVA – TELEFONIA – TELEMATICA
TAGS: LINGUAGGIO DI PROGRAMMAZIONE – LINEARMENTE INDIPENDENTI – TRASFORMATA DI FOURIER – TRASFORMATA DI LAPLACE – PROGRAMMAZIONE LINEARE
Mostra altri risultati Nascondi altri risultati su rete (4)
Mostra Tutti
1 2
Vocabolario
campo
campo s. m. [lat. campus «campagna, pianura» poi «campo di esercitazioni, campo di battaglia»]. – Termine che ha assunto (per evoluzione dai sign. principali che già aveva nella lingua d’origine) notevole varietà di accezioni e di usi, rimanendo...
vettoriale
vettoriale agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali