• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
3 risultati
Tutti i risultati [20]
Analisi matematica [3]
Matematica [15]
Algebra [7]
Fisica [6]
Fisica matematica [5]
Geometria [4]
Temi generali [3]
Storia della fisica [3]
Botanica [2]
Biologia [2]

diffeomorfismo

Enciclopedia on line

In matematica, omeomorfismo tra due varietà differenziabili che possa rappresentarsi analiticamente mediante funzioni differenziabili nelle coordinate locali delle due varietà. Moderni studi hanno mostrato l’esistenza di varietà differenziabili riferibili tra loro in un omeomorfismo (➔ anche topologia) ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: MATEMATICA
Mostra altri risultati Nascondi altri risultati su diffeomorfismo (2)
Mostra Tutti

Whitney Hassler

Dizionario delle Scienze Fisiche (1996)

Whitney Hassler Whitney 〈uìtni〉 Hassler [STF] (n. New York 1907) Prof. di matematica nella Harvard Univ. (1946) e di Princeton (1952). ◆ [ALG] Classi di W., o di Stiefel-W.: per una varietà differenziabile [...] delle varietà differenziabili: una varietà differenziabile M, di dimensione n, chiusa e connessa, corrisponde sempre, in un opportuno diffeomorfismo, a una varietà N dello spazio euclideo (2n+1)-dimensionale: v. varietà differenziabili: VI 490 a. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA

varietà

Enciclopedia on line

Agraria Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...] se esiste l’inversa ϕ−1 anch’essa di classe Ci (si parla in tal caso anche di omeomorfismo differenziabile o diffeomorfismo). Due v. isomorfe hanno necessariamente la stessa dimensione n. La relazione di isomorfismo tra v. di dimensione n e classe Ci ... Leggi Tutto
CATEGORIA: FORME E GENERI – SISTEMATICA E FITONIMI – ANALISI MATEMATICA – SISTEMATICA E ZOONIMI – AGRONOMIA E TECNICHE AGRARIE
TAGS: CAMPO ALGEBRICAMENTE CHIUSO – FUNZIONE DIFFERENZIABILE – RELAZIONE DI EQUIVALENZA – EQUAZIONI DIFFERENZIALI – COORDINATE PROIETTIVE
Mostra altri risultati Nascondi altri risultati su varietà (6)
Mostra Tutti
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali