• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
78 risultati
Tutti i risultati [657]
Matematica [78]
Archeologia [119]
Arti visive [113]
Fisica [103]
Temi generali [57]
Geografia [41]
Chimica [35]
Architettura e urbanistica [35]
Economia [35]
Fisica matematica [32]

La scienza presso le civiltà precolombiane. La natura della conoscenza e delle pratiche scientifiche nella civiltà inca

Storia della Scienza (2001)

La scienza presso le civilta precolombiane. La natura della conoscenza e delle pratiche scientifiche nella civilta inca Gary Urton Jean-François Genotte La natura della conoscenza e delle pratiche [...] andine prima di loro) svilupparono tradizioni talmente complesse, nella geometria e nei calcoli, che permisero loro di rispondere alle sfide del modo in cui erano stimati e assegnati, oppure distribuiti, i tributi inca in una data popolazione (Julien ... Leggi Tutto
CATEGORIA: COMPUTO DEL TEMPO – STORIA DELL ASTRONOMIA – BOTANICA PER REGIONI E PAESI – STORIA DELLA MATEMATICA – AMERICA – AGRICOLTURA NELLA STORIA – AGRONOMIA E TECNICHE AGRARIE

Geometria non commutativa

Enciclopedia della Scienza e della Tecnica (2007)

Geometria non commutativa Alain Connes Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo allora la teoria generale della relatività dà chiaramente ragione a Carl [...] di T, che ha un'espressione locale in termini del nucleo di distribuzione k(x,y), con x,y∈M. Per T di ordine ha anch'essa la dimensione di una lunghezza. Pertanto, nel caso geometrico classico, sia il ciclo fondamentale nella K-omologia sia la metrica ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – APPROSSIMAZIONE SEMICLASSICA – ELETTRODINAMICA QUANTISTICA – GRUPPO DI RINORMALIZZAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] Usando la formula per la somma dei termini di una progressione geometrica, per ∣t∣⟨1 otteniamo: Per calcolare R(n) è sufficiente il modulo di tali somme (una successione an è uniformemente distribuita se il numero delle parti frazionarie {ai}, i=1, ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] Fantechi. Un caso già molto interessante e comunque di grande rilevanza geometrica è quello in cui la varietà V si riduce a un punto , si può considerare la funzione Se come distribuzione di probabilità si considera la misura la corrispondente ... Leggi Tutto
CATEGORIA: GEOMETRIA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] di Atiyah-Singer citata nel cap. 5 ha fatto sì che la geometria differenziale costituisca anche un ponte tra la topologia e l'analisi. La teoria della distribuzione dei valori di Nevanlinna e le sue generalizzazioni successive possono essere più ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] per il ruolo che ebbe in fisica teorica e in geometria differenziale nel XX secolo. Charles-Émile Picard (1856-1941) Ω (o, ciò che è equivalente, ∆u≥0 nel senso della teoria delle distribuzioni). Per esempio, la soluzione di ∆u=0 in Ω con u=φ su ∂ ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] quoziente mP/(mP)2. Un altro matematico che si convertì alla geometria algebrica negli anni Trenta del XX sec. fu il francese André vera, implicherebbe un gran numero di risultati sulla distribuzione dei primi, ed è quindi naturale che gli studiosi ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

Sistemi dinamici. Origini e sviluppo

Enciclopedia della Scienza e della Tecnica (2007)

Sistemi dinamici. Origini e sviluppo Giovanni Jona-Lasinio La teoria dei sistemi dinamici è un settore della matematica pura e applicata che si è sviluppato intensamente a partire dagli anni Sessanta [...] cioè la convergenza dei momenti delle distribuzioni. Tipicamente le distribuzioni iniziali che hanno una densità diversa tal modo si stabilisce un legame tra la caoticità geometrica delle singole traiettorie e le proprietà statistiche del sistema ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – TEMI GENERALI
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – ACCADEMIA NAZIONALE DEI LINCEI – SISTEMI DI EQUAZIONI LINEARI – DISTRIBUZIONE DI PROBABILITÀ – STATISTICAMENTE INDIPENDENTI
Mostra altri risultati Nascondi altri risultati su Sistemi dinamici. Origini e sviluppo (3)
Mostra Tutti

NUMERI

XXI Secolo (2010)

Numeri Umberto Zannier Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] se ne accorsero perché non possedevano il concetto di limite, né utilizzavano le cifre, ma ragionavano geometricamente. Aggiungiamo che la distribuzione delle cifre di numeri come è comunque tuttora molto misteriosa. In parziale analogia con questa ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] deriva dagli studi compiuti da Descartes nel suo libro La géométrie (1637), secondo il quale un polinomio di grado n legati ai campi quadratici con numero di classe 1. La distribuzione dei numeri primi Legendre tentò anche di ricavare una formula ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8
Vocabolario
struttura
struttura s. f. [dal lat. structura, der. di struĕre «costruire, ammassare», part. pass. structus]. – In senso ampio, la costituzione e la distribuzione degli elementi che, in rapporto di correlazione e d’interdipendenza funzionale, formano...
piano²
piano2 piano2 s. m. [lat. planum «pianura» (propr. neutro sostantivato dell’agg. planus: v. la voce prec.); nel sign. 7 ricalca il fr. plan] (pl. ant. le piànora). – 1. Superficie piana, generalm. orizzontale, ma anche verticale o variamente...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali