• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
28 risultati
Tutti i risultati [283]
Storia della fisica [28]
Matematica [122]
Fisica [54]
Biografie [44]
Storia della matematica [40]
Analisi matematica [35]
Fisica matematica [26]
Temi generali [19]
Algebra [19]
Meccanica [17]

meccanica

Enciclopedia on line

Scienza che studia il moto e l’equilibrio dei corpi. È tradizionalmente divisa in tre parti: cinematica, dinamica e statica, che studiano, rispettivamente, il moto prescindendo dalle sue cause, il moto [...] relazioni [2] formula che sono appunto le equazioni di Lagrange o, con più precisa denominazione, la ‘seconda forma delle equazioni di Lagrange’. Si tratta di un sistema di n equazioni differenziali del second’ordine nelle n funzioni incognite ... Leggi Tutto
CATEGORIA: DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – STORIA DELLA FISICA
TAGS: LEGGE DELLA GRAVITAZIONE UNIVERSALE – EQUAZIONE ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE LINEARE – LUNGHEZZA D’ONDA DI DE BROGLIE – SCIENZA DELLE COSTRUZIONI
Mostra altri risultati Nascondi altri risultati su meccanica (4)
Mostra Tutti

Fisica

Enciclopedia del Novecento (1977)

Fisica BBruno Ferretti di Bruno Ferretti Fisica sommario: 1. Introduzione. a) Obiettività secondo Poincaré. b) Storia naturale e fisica. c)  Il metodo sperimentale e il metodo teorico. d) Storicità [...] secondo ordine può essere ridotto, e in infiniti modi, a un sistema di 2f equazioni del primo ordine. Nel caso delle equazioni di Lagrange, uno dei modi di effettuare questa riduzione, dovuto ad Hamilton, è particolarmente interessante. Per i sistemi ... Leggi Tutto
CATEGORIA: MECCANICA QUANTISTICA – STORIA DELLA FISICA
TAGS: PRINCIPIO DI INDETERMINAZIONE' DI HEISENBERG – PRINCIPIO DI COMPLEMENTARITÀ – RADIAZIONE ELETTROMAGNETICA – MOMENTO ANGOLARE INTRINSECO – COSTANTE DI STRUTTURA FINE
Mostra altri risultati Nascondi altri risultati su Fisica (13)
Mostra Tutti

L'Età dei Lumi: matematica. Meccanica e ingegneria

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Meccanica e ingegneria Massimo Corradi Meccanica e ingegneria Alla fine del XVII sec. e forse anche agli inizi di quello successivo, prima della formalizzazione del calcolo [...] ha condotto nel modo più felice alla traduzione del principio di d'Alembert nelle equazioni di Lagrange, il più efficace strumento formale della dinamica. Il programma di ricerca di d'Alembert aveva sollevato inoltre la seguente importante questione ... Leggi Tutto
CATEGORIA: MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA

L'Ottocento: fisica. L'elettromagnetismo e il campo

Storia della Scienza (2003)

L'Ottocento: fisica. L'elettromagnetismo e il campo Jed Z. Buchwald L'elettromagnetismo e il campo William Thomson e Michael Faraday Nel corso degli anni Trenta del XIX sec., Michael Faraday (1791-1867) [...] modo si sarebbero ottenute, per così dire, analoghe 'equazioni del moto' per il fenomeno in questione. Similmente si sarebbero, per esempio, potute inserire nelle equazioni di Lagrange opportune espressioni tratte dall'elettrodinamica e ottenere le ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – STORIA DELLA FISICA

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] ), con l'ulteriore semplificazione si ottiene, per l''energia cinetica' totale del sistema meccanico, la seguente equazione di Lagrange del secondo tipo (Lagrange 1788, p. 226 [1853-55, II, p. 334]): Qui denota la 'velocità generalizzata'. La ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO

energia

Dizionario delle Scienze Fisiche (1996)

energia energìa [Der. del lat. energia, dal gr. enérgeia, da érgon "lavoro"] [LSF] Capacità che un corpo o un sistema di corpi ha di compiere lavoro, sia come e. in atto, cioè che opera nel processo [...] exergy, per il quale peraltro il termine corrente è exergia (←). ◆ [MCC] E. generalizzata: è un integrale primo delle equazioni di Lagrange: v. meccanica analitica: III 655 a. ◆ [LSF] E. in atto: contrapp. a e. potenziale, v. sopra, nella definizione ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su energia (13)
Mostra Tutti

d'Alembert Jean-Baptiste Le Rond

Dizionario delle Scienze Fisiche (1996)

d'Alembert Jean-Baptiste Le Rond d'Alembert 〈d'alambèer〉 Jean-Baptiste Le Rond (in gioventù detto anche Dalembert o Daremberg) [STF] (Parigi 1717 - ivi 1783) Membro dell'Accademia di Francia dal 1754, [...] traduzione del principio di d'A. nelle equazioni di Lagrange che dominano la dinamica, parlandosi così di principio di d'A.-Lagrange: v. meccanica analitica: III 654 d. ◆ [MCC] Teorema di d'A.: afferma che ogni equazione algebrica di grado n, nel ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA FONDAMENTALE DELL'ALGEBRA – EQUAZIONI DI LAGRANGE – ACCADEMIA DI FRANCIA – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su d'Alembert Jean-Baptiste Le Rond (3)
Mostra Tutti

Maggi Gian Antonio

Dizionario delle Scienze Fisiche (1996)

Maggi Gian Antonio Maggi Gian Antonio [STF] (Milano 1856 - ivi 1937) Prof. di analisi matematica nell'univ. di Messina (1886), poi di meccanica razionale nell'univ. di Pisa (1895) e di Milano (1925). [...] del moto per sistemi soggetti a vincoli anolonomi, cioè dipendenti dal tempo, che possono essere considerate un'estensione delle equazioni di Lagrange (v. meccanica analitica: III 654 e): Σh=lh=1 fhi(d/dt)(∂T/∂q✄h)-(∂T/∂qh)=Σh=lh=1 fhi Qh, con ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA
Mostra altri risultati Nascondi altri risultati su Maggi Gian Antonio (3)
Mostra Tutti

Lagrange Giuseppe Luigi

Dizionario delle Scienze Fisiche (1996)

Lagrange Giuseppe Luigi Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] 'École Normale e nell'École polytechnique di Parigi (1787). ◆ [OTT] Condizione di ortoscopia L.-Airy: → Airy, Sir George Biddel. ◆ [MCC] Equazioni di L. (o equazione di Eulero-L.): equazioni differenziali che reggono il moto di un sistema olonomo: v ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DIFFERENZIALE – ACCADEMIA DI BERLINO – INDICE DI RIFRAZIONE – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Lagrange Giuseppe Luigi (5)
Mostra Tutti

L'Ottocento: matematica. Elasticità e idrodinamica

Storia della Scienza (2003)

L'Ottocento: matematica. Elasticita e idrodinamica Gleb Mikhailov Elasticità e idrodinamica Il XIX sec. rappresenta per la storia della meccanica dei continui un periodo particolarmente importante, [...] con le equazioni canoniche di Hamilton, mentre la trasformazione di Weber fornisce una forma modificata delle equazioni del moto espressa nelle cosiddette 'variabili' di Lagrange. Ricordiamo inoltre una forma delle equazioni di flusso trovata ... Leggi Tutto
CATEGORIA: MECCANICA DEI FLUIDI – STORIA DELLA FISICA – IDRAULICA
1 2 3
Vocabolario
lagrangiano
lagrangiano agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali