• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
il chiasmo
37 risultati
Tutti i risultati [373]
Storia della fisica [37]
Matematica [183]
Fisica [90]
Analisi matematica [65]
Biografie [54]
Fisica matematica [52]
Temi generali [42]
Storia della matematica [38]
Chimica [26]
Algebra [25]

L'Età dei Lumi: matematica. I Principia di Newton nel Settecento

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I Principia di Newton nel Settecento Niccolò Guicciardini I Principia di Newton nel Settecento Nel 1687 furono pubblicati a Londra i Principia di Newton. Quest'opera è oggi [...] come leggere le dimostrazioni dei Principia in termini di equazioni differenziali. Per esempio, egli istruì David Gregory (1659-1708 a Leibniz o a Newton, quali le equazioni alle derivate parziali e il calcolo delle variazioni. È anche grazie ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

Poisson Simeon-Denis

Dizionario delle Scienze Fisiche (1996)

Poisson Simeon-Denis Poisson 〈puasòn〉 Siméon-Denis [STF] (Pithiviers 1781 - Parigi 1840) Prof. di analisi matematica e di meccanica nell'École polytechnique (1802) e alla Sorbona di Parigi (1812). ◆ [...] di P. (v. sopra); (b) espressione di una soluzione particolare di un'equazione iperbolica: v. equazioni differenziali alle derivate parziali: II 444 d. ◆ [MCC] Formule di P.: legano le derivate temporali dei versori degli assi di una terna cartesiana ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – EQUAZIONI DIFFERENZIALI ORDINARIE – DISTRIBUZIONE DI PROBABILITÀ – SOLUZIONI COLLOIDALI – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Poisson Simeon-Denis (2)
Mostra Tutti

condizione

Dizionario delle Scienze Fisiche (1996)

condizione condizióne [Der. del lat. condicio -onis (tardo conditio -onis), da condicere "accordarsi, convenire"] [LSF] Fatto il cui intervento è necessario perché un altro fatto possa verificarsi (per [...] è quasi sempre specificato da un'opportuna qualificazione. ◆ [ANM] C. ai limiti o al contorno: per le equazioni differenziali alle derivate parziali, sono i valori prefissati che le funzioni incognite e talune loro derivate devono assumere in certi ... Leggi Tutto
CATEGORIA: FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – EPISTEMOLOGIA – METAFISICA

evoluzione

Dizionario delle Scienze Fisiche (1996)

evoluzione evoluzióne [Der. del lat. evolutio -onis, da evolvere (→ evoluta)] [LSF] (a) Con signif. concreto, l'insieme delle posizioni assunte successiv. da un corpo in moto. (b) Con signif. figurato, [...] di e.: lo stesso che e. del moto di un sistema dinamico: v. equazioni differenziali alle derivate parziali: II 445 a. ◆ [FSN] Equazione di e. di Altarelli-Parisi: v. cromodinamica quantistica: II 70 f. ◆ [BFS] [FAF] Teoria dell'e.: teoria sull ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – BIOFISICA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – ANALISI MATEMATICA – EPISTEMOLOGIA – METAFISICA

Green George

Dizionario delle Scienze Fisiche (1996)

Green George Green 〈grìin〉 George [STF] (Sneinton, Nottingham, 1793 - ivi 1841) Prof. di matematica nel Caius College di Cambridge. ◆ [ANM] Formula di G.: v. oltre: Teorema di Green. ◆ [ANM] Formula [...] ] Funzione di G.: funzione che s'introduce per risolvere il problema al contorno di un'equazione differenziale ellittica: v. equazioni differenziali alle derivate parziali: II 443 c. ◆ [ANM] Funzione di G. per lo spazio libero: v. diffrazione della ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – INTEGRALE DI UNA FUNZIONE – EQUAZIONE DIFFERENZIALE – VARIETÀ RIEMANNIANE – SPAZIO EUCLIDEO
Mostra altri risultati Nascondi altri risultati su Green George (2)
Mostra Tutti

Burgers Johannes Martinus

Dizionario delle Scienze Fisiche (1996)

Burgers Johannes Martinus Burgers 〈böʹrgës〉 Johannes Martinus [STF] (Arnhem, Olanda, 1895 - Ann Arbor 1981) Prof. di fisica nell'univ. del Michigan, ad Ann Arbor (1955). ◆ [FSD] Anello, o circuito o [...] dislocazione, di B.: v. dislocazione: II 210 e. ◆ [MCF] Equazione di B.: v. turbolenza: VI 370 e e equazioni differenziali alle derivate parziali: II 439 c. ◆ [MCF] Modello di B.: v. turbolenza: VI 370 d. ◆ [FSD] Vettore di B.: v. dislocazione: II ... Leggi Tutto
CATEGORIA: FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA DEI FLUIDI – STORIA DELLA FISICA – ANALISI MATEMATICA

Nicholson John Willian

Dizionario delle Scienze Fisiche (1996)

Nicholson John Willian Nicholson 〈nìkëlsn〉 John Willian [STF] (Darlington 1881 - m. 1955) Prof. di matematica nell'univ. di Londra (1912), poi di Unford (1921). ◆ [ANM] Metodo di Crank-N.: metodo di [...] risoluzione numerica di equazioni differenziali alle derivate parziali: v. calcolo numerico: I 411 e. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
1 2 3 4
Vocabolario
equazióne
equazione equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
integrale
integrale agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali