• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
97 risultati
Tutti i risultati [641]
Matematica [97]
Fisica [91]
Temi generali [84]
Biologia [73]
Diritto [58]
Medicina [50]
Chimica [46]
Informatica [33]
Economia [34]
Ingegneria [29]

esponenziale, funzióne

Enciclopedia on line

esponenziale, funzióne In matematica, ogni funzione del tipo y =a x, dove la variabile indipendente x compare come esponente. Se si suppone a  reale e maggiore di 1, e x  reale, la f.e. risulta univocamente [...] definita per ogni valore reale e sempre crescente. In partic. si dà il nome di esponenziale alla funzione y =e x (e = 2,7182..., costante di Nepero; ➔ esponente). ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: MATEMATICA – ESPONENTE
Mostra altri risultati Nascondi altri risultati su esponenziale, funzióne (2)
Mostra Tutti

complessità

Enciclopedia on line

complessità Caratteristica di un sistema (perciò detto complesso), concepito come un aggregato organico e strutturato di parti tra loro interagenti, in base alla quale il comportamento globale del sistema [...] L crescenti; questo è, per es., il caso in cui τ(L) è una funzione esponenziale di L. Questa prima classificazione tra algoritmi polinomiali ed esponenziali, pur se di notevole interesse, lascia aperti vari interrogativi. Infatti disponendo per un ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – TEMI GENERALI – FISICA MATEMATICA – LOGICA MATEMATICA
TAGS: SENSIBILITÀ ALLE CONDIZIONI INIZIALI – EQUILIBRIO TERMODINAMICO – STRATIFICAZIONE SOCIALE – TEORIA DELLE CATASTROFI – FUNZIONE ESPONENZIALE
Mostra altri risultati Nascondi altri risultati su complessità (2)
Mostra Tutti

serie

Enciclopedia on line

Successione ordinata e continua di elementi, concreti e astratti, dello stesso genere. Ecologia Successione delle comunità che si sostituiscono l’una all’altra in una regione. Le comunità di transizione [...] S. del tipo dove a0, ak, bk sono numeri reali qualsiasi e x è una variabile reale. Si può anche scrivere, usando la funzione esponenziale nel campo complesso e le s. bilatere, sotto la forma ∑+∞k=−∞ckeikx con ck=(ak−ibk)/2, e c–k=(ak+ibk)/2 ... Leggi Tutto
CATEGORIA: ASPETTI TECNICI – TEMI GENERALI – BIOINGEGNERIA – ECOLOGIA – ECOLOGIA VEGETALE E FITOGEOGRAFIA – CRONOLOGIA GEOLOGICA – ANALISI MATEMATICA – GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA – ECOLOGIA ANIMALE E ZOOGEOGRAFIA – EDITORIA E ARTE DEL LIBRO – ATTIVITA ESERCIZI COMMERCIALI MERCATI – FILIERE STRUMENTI E TECNICHE DELLA PRODUZIONE INDUSTRIALE – INDUSTRIA GRAFICA – ELETTROTECNICA
TAGS: DISCONTINUITÀ DI PRIMA SPECIE – FUNZIONE DI VARIABILE REALE – LIMITE DELLA SUCCESSIONE – APPROSSIMAZIONE LINEARE – EQUAZIONI DIFFERENZIALI
Mostra altri risultati Nascondi altri risultati su serie (6)
Mostra Tutti

logaritmo

Enciclopedia on line

Si definisce l. di un numero reale positivo x rispetto alla base a (reale, positiva e diversa da 1) l’esponente y che bisogna attribuire alla base a per ottenere il numero x; il l. di x nella base a si [...] x tende a zero e +∞ quando x tende a +∞; viceversa, se a < 1. La funzione logaritmica è l’inversa della funzione esponenziale y=ax. Il grafico della funzione l. è detto curva logaritmica (fig. 1). Scala logaritmica Scala graduata che si ottiene ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: CALCOLATORI ELETTRONICI – EQUAZIONE ESPONENZIALE – FUNZIONE ESPONENZIALE – ELEVAMENTO A POTENZA – FUNZIONE LOGARITMICA
Mostra altri risultati Nascondi altri risultati su logaritmo (3)
Mostra Tutti

esponente

Enciclopedia on line

Nella matematica elementare, e. di una potenza è il numero di fattori uguali tra loro, il cui prodotto esprime il valore della potenza. È scritto accanto alla base della potenza in alto a destra: 53; [...] univocamente definita per ogni valore reale, e sempre crescente. In particolare, si dà il nome di funzione esponenziale (o solo esponenziale) alla funzione y = ex, dove e = 2,7182... è la costante di Nepero (➔ Napier). Essa gode della fondamentale ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: EQUAZIONE ESPONENZIALE – FUNZIONE ESPONENZIALE – ASSE DELLE ORDINATE – RELAZIONE DI EULERO – SERIE DI MACLAURIN
Mostra altri risultati Nascondi altri risultati su esponente (2)
Mostra Tutti

Geometria

Enciclopedia Italiana - VI Appendice (2000)

Geometria Ryoichi Kobayashi e Luigi Ambrosio Giovanni Bellettini (XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391) Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e [...] prima descritte: . Tenendo presente la ben nota formula si pone eit=cost+isent e si arriva quindi alla definizione della funzione esponenziale complessa ez:=eRez (cosImz+isenImz), dove indichiamo con Rez la parte reale di z e con Imz la parte ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONE DIFFERENZIALE ORDINARIA – SCUOLA NORMALE SUPERIORE DI PISA – CARATTERISTICA DI EULERO – FUNZIONI DIFFERENZIABILI
Mostra altri risultati Nascondi altri risultati su Geometria (13)
Mostra Tutti

ALGEBRA LINEARE

Enciclopedia Italiana - VII Appendice (2006)

L'a. l. costituisce uno strumento matematico di importanza fondamentale in ogni disciplina scientifica. Essa costituisce sia un efficace linguaggio comune con cui formulare problemi di natura diversa, [...] di ritornare in uno stato di equilibrio una volta che ne viene allontanato. Problemi tipici sono il calcolo della funzione esponenziale di una matrice, determinare se una matrice ha autovalori con parte reale negativa (caso a tempo continuo) o di ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: DECOMPOSIZIONE AI VALORI SINGOLARI – EQUAZIONI DIFFERENZIALI ORDINARIE – METODO DI ELIMINAZIONE GAUSSIANA – SISTEMI DI EQUAZIONI LINEARI – ESPONENZIALE DI UNA MATRICE
Mostra altri risultati Nascondi altri risultati su ALGEBRA LINEARE (1)
Mostra Tutti

trascendente

Enciclopedia on line

trascendente In matematica, funzione t., ogni funzione non algebrica, nella quale cioè il legame tra la variabile dipendente y e la variabile indipendente x non può essere espresso da una relazione del [...] y)=0, con f polinomio in x e y. Le funzioni t. che per prime si presentano sono la funzione logaritmica (y=logx, in particolare, y=lnx), la funzione esponenziale (y=ex), le funzioni circolari o trigonometriche (seno, coseno, tangente ecc.) e le loro ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: FUNZIONE ESPONENZIALE – FUNZIONE LOGARITMICA – NUMERI ALGEBRICI – NUMERI REALI – NUMERABILE

Fermat, ultimo teorema di

Enciclopedia del Novecento (2004)

Fermat, ultimo teorema di MMassimo Bertolini di Massimo Bertolini SOMMARIO: 1. Introduzione. ▭ 2. Storia: il lavoro di Kummer. ▭ 3. Estensioni abeliane di Q. ▭ 4. Estensioni esplicite di campi e funzioni [...] di Kronecker-Weber afferma che tutte le estensioni abeliane di Q si ottengono aggiungendo i valori della funzione esponenziale e2πix con esponenti x razionali. È naturale cercare di generalizzare questa affermazione sostituendo al campo razionale Q ... Leggi Tutto
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – RELAZIONE DI EQUIVALENZA – POLINOMIO IRRIDUCIBILE – ALEXANDER GROTHENDIECK – ADRIEN MARIE LEGENDRE
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] come ???OUT-Q???(α), dove α è uno speciale valore della funzione esponenziale. L. Kronecker, verso la metà del XIX secolo, congetturò che speciali valori di funzioni automorfe possano dar luogo a estensioni abeliane di corpi quadratici immaginari ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER
1 2 3 4 5 6 7 8 ... 10
Vocabolario
esponenziale
esponenziale agg. e s. m. [der. di esponente]. – 1. Relativo all’esponente, come esponente. a. In matematica, funzione e., quella del tipo y = ax, in cui cioè la variabile indipendente x compare come esponente (per a reale e maggiore di 1...
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali