• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
221 risultati
Tutti i risultati [1416]
Matematica [221]
Fisica [168]
Temi generali [172]
Economia [134]
Diritto [123]
Medicina [117]
Biologia [96]
Analisi matematica [88]
Scienze demo-etno-antropologiche [74]
Fisica matematica [76]

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] dominante, come precursori del futuro concetto aritmetico-algebrico di funzione e di numero, i concetti di punto, curva e superficie. Nel XVII sec. l'odierna funzione reale di una o più variabili era una curva o una superficie e questo punto ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] f(a, c). Supponiamo che f sia continua a destra in ciascuna variabile separatamente e tale che la τ definita dianzi sia sempre non negativa. La di q. o. è legato ai limiti. Se {fn} è una successione di funzioni a valori reali su uno spazio di misura ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] di variabile, a , mentre il caso parabolico corrisponde, dopo un cambiamento di variabile, a Questa classificazione fu in seguito estesa a EDP di tipica è quella di una famiglia di funzioni Fλ(u) dipendenti da un parametro λ, con λ reale e Fλ(0)= ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] aspetti della teoria classica degli insiemi, per esempio quella di Georg Cantor (1845-1918). Per esempio, se C[a,b] è l'insieme delle funzioni f (a valori reali) nella variabile reale s, definite e continue nell'intervallo chiuso [a, b], la ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] a,b] è un intervallo della retta reale ℝ e f(x,y,η) è una funzione regolare di tre variabili reali. Dati due numeri reali α e β, si considera il problema di trovare un minimo di F(u) tra tutte le funzioni u sufficientemente regolari che verificano le ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] in termini di teoria delle funzioni. Dimostrò così, tra l'altro, che non tutte le varietà (di dimensione reale pari) possono delle funzioni, le sezioni di fibrati. Un vecchio teorema di Cousin sull'esistenza di una funzione di più variabili che ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] delle applicazioni classiche. Ritorno al calcolo infinitesimale Contrariamente al trattamento classico, nelle concezioni attuali le funzioni reali di una variabile reale non costituiscono più un capitolo speciale e introduttivo, ma intervengono solo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

L'Età dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace Curtis Wilson La matematica della teoria delle perturbazioni da Euler a Laplace Accanto allo sviluppo dei [...] Reale Prussiana delle Scienze) di Berlino, l'altra all'Académie Royale des Sciences di di destra le variabili r, r′, v, θ e ψ. Con il proposito di ridurre a due il numero di variabili ] occorreva rimpiazzare r con una funzione di φ. Così, come Euler, ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] la funzione reale τ(ε) abbia derivata nulla in ε=0, per ogni v∈C0. Le funzioni z che godono di questa prorietà sono chiamate punti critici di T soluzioni uℏ>0 della [44] per ℏ→0. Con il cambio di variabile x→ℏx, essa diventa ∂2u/∂x2+λu+V(ℏx)u=u3, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

Caos

Enciclopedia del Novecento II Supplemento (1998)

Caos Robert L. Devaney Introduzione storica Secondo l'accezione più comune, il termine ‛caos' significa totale annientamento dell'ordine o assenza di qualsiasi struttura. Analogamente, in matematica, [...] , che si chiama ordinamento di Sarkovskii. Sia F una qualsiasi funzione continua sulla retta reale o su un suo intervallo. Se F ha un ciclo di periodo n, e n viene prima di k nell'ordinamento di Sarkovskii, F ha anche un ciclo di periodo k. Si noti ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – METEOROLOGIA – LOGICA MATEMATICA – MATEMATICA APPLICATA
TAGS: MASSACHUSETTS INSTITUTE OF TECHNOLOGY – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE ALLE DERIVATE PARZIALI – DIMENSIONE DI HAUSDORFF – FIOCCO DI NEVE DI KOCH
1 2 3 4 5 6 7 8 ... 11 ... 23
Vocabolario
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
variàbile
variabile variàbile agg. e s. f. [dal lat. tardo variabĭlis, der. di variare «variare»]. – 1. agg. Che varia, che può variare, che è soggetto a variare: grandezza, valore, norma v.; il prezzo è v. secondo le stagioni e la richiesta; quindi...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali