• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
8 risultati
Tutti i risultati [74]
Analisi matematica [8]
Matematica [22]
Arti visive [8]
Biografie [6]
Archeologia [6]
Geometria [5]
Storia della matematica [5]
Fisica [5]
Economia [5]
Algebra [4]

convessità

Enciclopedia on line

convessità Una figura (piana o solida) è detta convessa se, dati due suoi punti qualunque, il segmento che li congiunge appartiene interamente alla figura. Più in generale questa definizione si applica [...] , in pieno sviluppo, della matematica (a partire dagli studi di H. Minkowski, C. Carathéodory, D. Hilbert ecc.). Funzioni convesse Una funzione f è convessa in un dominio convesso C (per es., un intervallo) se per ogni x, y in C si ha con 0 〈 t 〈 1 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA – TEMI GENERALI
TAGS: SPAZIO VETTORIALE – FUNZIONI CONVESSE – CURVA CHIUSA – MATEMATICA – POLIEDRO
Mostra altri risultati Nascondi altri risultati su convessità (1)
Mostra Tutti

convessita generalizzata

Enciclopedia della Scienza e della Tecnica (2008)

convessità generalizzata Angelo Guerraggio Termine che designa gli studi tesi a estendere le proprietà delle funzioni convesse (o concave) – almeno quelle ritenute essenziali in un determinato contesto [...] così dire, almeno in ipotesi di continuità, intermedia tra quella delle funzioni convesse e quella delle funzioni quasi-convesse. Una funzione f, definita su un insieme convesso C⊂ℝν, è detta pseudo-convessa quando per ogni x,y∈C e per ogni t∈[0,1 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

ottimizzazione non smooth

Enciclopedia della Scienza e della Tecnica (2008)

ottimizzazione non smooth Angelo Guerraggio Teoria e metodi dell’ottimizzazione che utilizzano ipotesi più deboli di quella classica di differenziabilità (secondo Fréchet). La ricerca di una definizione [...] ′(x,d)≥y∙d per ogni d (dove f′(x,d) indica la derivata di f nel punto x e nella direzione d). Ogni funzione convessa (superiormente limitata nell’intorno di un punto) è localmente lipschitziana, sod- disfa cioè la condizione ∣f(x)−f(y)∣≤k∣∣x−y ∣∣ per ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] caso si trova per il funzionale rilassato Å l'espressione dove å (x, y, η) rappresenta la massima funzione convessa rispetto a η (quasi convessa rispetto a η nel caso di funzioni u a valori in Rm) che sia minore o uguale a f (x, y, η). Il problema ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] se n=1 oppure m=1. Una sottoclasse particolarmente interessante di funzioni quasi convesse è quella delle funzioni 'policonvesse' (Ball 1977), cioè delle funzioni del tipo g(η)=h(M(η)), dove h è una funzione convessa e M(η) indica il vettore le cui ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

punti di sella

Enciclopedia della Scienza e della Tecnica (2008)

punti di sella Angelo Guerraggio Nell’enunciato del teorema di Kuhn-Tucker, relativo al problema di determinare il massimo di una funzione f con i vincoli gi(x)≤0, compare la funzione lagrangiana L [...] : se x0 è soluzione del problema di ottimo con A insieme convesso, la funzione obiettivo f concava e le funzioni di vincolo convesse ed è soddisfatta una condizione di qualificazione dei vincoli, allora esiste un moltiplicatore λ0 a componenti ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su punti di sella (1)
Mostra Tutti

teorema di Kuhn-Tucker

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Kuhn-Tucker Angelo Guerraggio Nella funzione lagrangiana che compare nell’enunciato del teorema di Fritz John, il moltiplicatore λ0 (associato alla funzione obiettivo f) può valere 0 oppure [...] siano linearmente indipendenti e quella che richiede che le stesse funzioni gi siano pseudo-convesse. La condizione necessaria di Kuhn -Tucker diventa anche sufficiente in ipotesi di convessità: se x0 soddisfa le relazioni viste nel teorema di Fritz ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – MATEMATICA APPLICATA

teoria della dualita

Enciclopedia della Scienza e della Tecnica (2008)

teoria della dualità Angelo Guerraggio Nell’ambito dell’ottimizzazione associa a un problema di ottimo (detto primale) un altro problema (detto duale), talvolta più semplice da risolvere e che comunque [...] vincoli λi≥0 e gradf(x)−∑λigradgi(x) =0. Il teorema di dualità debole stabilisce che, se le funzioni f e gi sono differenziabili, con f concava e gi convesse, allora l’estremo inferiore di L(x,λ) è maggiore o uguale dell’estremo superiore di f. Con ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
Vocabolario
tamburo
tamburo s. m. [dall’arabo ṭunbūr, nome di uno strumento musicale a corde, incrociato con ṭabūl «tamburo»]. – 1. a. In senso ampio, strumento musicale membranofono in cui l’elemento vibrante è costituito da una o due pelli (generalm. d’asino),...
annunciatóre
annunciatore annunciatóre (o annunziatóre) s. m. [dal lat. tardo annuntiator -oris]. – 1. (f. -trice) Chi annuncia, chi dà un annuncio: noi figli e annunziatori della promessa (Manzoni); l’angelo a. (qui in funzione appositiva; in altri casi,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali