geometriageometrìa [Der. del gr. gÝeometría, comp. di G✄è "Terra" e -metría "misurazione della Terra" (intesa soprattutto come porzioni di superficie terrestre), e dunque propr. "agrimensura", come [...] , metodo di Cartesio), cioè associando a ciascun ente geometricodi una certa famiglia un insieme ordinato di numeri, che e la g. ellittica o diRiemann, nella quale si postula la non esistenza di parallele. Come caso limite di entrambe si ha la g. ...
Leggi Tutto
costruzione geometrica nella geometria euclidea del piano, insieme di operazioni con riga e compasso utilizzate per realizzare la costruzione di una figura, per trovare le soluzioni di un problema, per ricavare le proprietà di un particolare oggetto, per dimostrare proposizioni. ...
Leggi Tutto
In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.
Cenni storiciL’antichità
- L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque a scopi agrimensori nella zona del delta del Nilo); si trattava quindi essenzialmente di una g. empirica, ... ...
Leggi Tutto
Alain Connes
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo allora la teoria generale della relatività dà chiaramente ragione a Carl F. Gauss e Georg F. Bernhard Riemann, che presero in considerazione curvature variabili. Essi formularono la geometria intrinseca ... ...
Leggi Tutto
Edoardo Vesentini
Nel tracciare i lineamenti essenziali di una storia della matematica, Federigo Enriques osservava nel 1938: "A chi raffronti gli sviluppi che i diversi rami delle matematiche hanno ricevuto durante il XIX sec., potrà sembrare giustamente che questo o quello abbiano un'importanza scientifica ... ...
Leggi Tutto
Walter Maraschini
Dalla misura della Terra all'organizzazione degli spazi
La geometria, 'sorella' dell'aritmetica e dell'algebra, è una parte della matematica che oggi si studia a scuola, ma è nata come scienza pratica per misurare i terreni e si è sviluppata come teoria rigorosa in cui tutto deve ... ...
Leggi Tutto
Ryoichi Kobayashi e Luigi Ambrosio
Giovanni Bellettini
(XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391)
Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e metodi geometrici, fra cui analitica, geometria (p. 86) nel vol. III; coniche (p. 151), coordinate (p. 294), e ... ...
Leggi Tutto
Irving E. Segal
Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria L2. 5. Le W*-algebre e la loro teoria L2. 6. I campi quantistici universali liberi. 7. Un esempio: le funzioni non lineari dell'equazione ... ...
Leggi Tutto
P. Morpurgo
Branche della matematica che nel Medioevo costituiscono, con la musica e l'astronomia, le scienze del quadrivium all'interno delle arti liberali, che preparano alla conoscenza di Dio.
Geometria
La g., scienza della misura ("Ma tu hai tutto disposto con misura, calcolo e peso"; Sap. 11, ... ...
Leggi Tutto
Mario Rosati
(XVI, p. 623; App. III, I, p. 724; IV, II, p. 39)
Le ricerche nel campo delle discipline geometriche ricoprono, com'è ormai noto da tempo, un'area sempre più ampia e differenziata all'interno delle ricerche matematiche. Non è facile quindi delineare un panorama complessivo dei progressi ... ...
Leggi Tutto
(XVI, p. 623; App. III, 1, p. 724)
Mario Rosati
L'evoluzione degli studi sulla g. negli ultimi decenni presenta alcuni caratteri comuni ad altri campi della ricerca matematica, come la tendenza all'assiomatizzazione e la sempre maggiore algebrizzazione, ma ha anche alcuni caratteri propri che non ... ...
Leggi Tutto
Michele Rak
Nel corso della comparazione tra l'ordine de li cieli e quello de le scienze la G., una delle scienze del Quadrivio, antica partizione della matematica, viene da D. comparata al cielo di Giove per due proprietadi: l'una sì è che [questo cielo] muove tra due cieli repugnanti a la sua buona ... ...
Leggi Tutto
(XVI, p. 623)
Vittorino DALLA VOLTA
Mario BENEDICTY
In questi ultimi venti anni la g. ha subìto una profonda evoluzione che ne ha mutato molti aspetti, tanto che oggi fra i matematici non vi è assoluto accordo su ciò che va inteso come geometria. Dando alla parola la più ampia accezione, si cercherà ... ...
Leggi Tutto
(gr. γεωμετρία)
Federigo ENRIQUES
Gin. F.
1. Le origini. - Geometria significa etimologicamente "misura della terra", e rimane ancora traccia di questo significato nella denominazione di "geometri" data ai periti agrimensori. Appunto da un problema di catasto Erodoto fa nascere la geometria in Egitto ... ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] André Weil che estende alle funzioni ζ dei campi finiti l'ipotesi diRiemann classica per la funzione ζ. Le ricerche di Deligne creano un profondo legame tra geometria algebrica e teoria algebrica dei numeri e gli varranno la medaglia Fields nel 1978 ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] l'ipotesi diRiemann generalizzata (ipotesi GRH, tuttora indimostrata). Numerose le applicazioni aritmetiche di questo teorema, specie nei problemi di natura additiva. Per questo e altri lavori ‒ in analisi reale e complessa e in geometria algebrica ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] una versione astratta del teorema diRiemann-Roch in termini dell'anello di Chow dei cicli algebrici su Grothendieck pubblica il primo di una serie di articoli denominati Éléments de géométrie algébrique (poi noti con il nome di EGA) in cui introduce ...
Leggi Tutto
La seconda rivoluzione scientifica: fisica e chimica. Relativita e gravitazione
Clive W. Kilmister
Relatività e gravitazione
Problemi relativi alla gravitazione newtoniana
Il successo della teoria [...] Levi-Civita (1873-1941), avevano generalizzato l'analisi di Gauss a un numero qualsiasi di dimensioni, dove la generalizzazione della R di Gauss era una matrice Rijkl, il tensore diRiemann-Christoffel.
Era necessario studiare innanzi tutto il caso ...
Leggi Tutto
numero
nùmero [Der. del lat. numerus] [LSF] Oltre che nei vari signif. propri della matematica, alcuni dei quali sono ricordati oltre, il termine è usato in varie discipline fisiche anche come sinon. [...] di analiticità della funzione zeta diRiemann. La stessa ipotesi diRiemann (assenza di zeri non banali della funzione zeta diRiemann, corrispondenza biunivoca con i punti di una retta, e ciò è alla base della geometria analitica e dell'analisi ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] di quelli aperti) e di coomologia a valori in un fascio, che saranno di fondamentale importanza sia in topologia sia in geometria questo risultato e per i suoi lavori sulla funzione ζ diRiemann, Selberg riceverà la medaglia Fields nel 1950.
La mappa ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] strumento per lo studio dei sistemi di equazioni differenziali, mentre la passione di Klein per le superfici diRiemann lo allontanò gradualmente dalla geometria algebrica portandolo nel campo della teoria geometrica delle funzioni. I risultati della ...
Leggi Tutto
riemannianoriemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] ogni altro caso la geometria della varietà è una geometria non di tipo euclideo. La condizione affinché la metrica possa ricondursi alla forma pitagorica è data dall'annullarsi del tensore diRiemann (←); questo permette di calcolare certe "curvature ...
Leggi Tutto
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...