• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
11 risultati
Tutti i risultati [71]
Analisi matematica [10]
Fisica [28]
Matematica [24]
Storia della fisica [14]
Statistica e calcolo delle probabilita [10]
Fisica matematica [10]
Temi generali [10]
Chimica [7]
Meccanica dei fluidi [6]
Meccanica quantistica [6]

laplaciano

Dizionario delle Scienze Fisiche (1996)

laplaciano laplaciano 〈laplasiano, ma pronunciato anche all'it.〉 [s.m. Der. dal cognome di P.-S. de Laplace] [ANM] L. od operatore di Laplace: è detto anche parametro differenziale secondo, o nabla quadrato, [...] di una funzione e ha simb. Δ (il più diffuso nel passato) oppure ∇2 (il più diffuso attualmente nella fisica, intendendosi con il l. il prodotto scalare dell'ope-ratore vettoriale nabla per sé stesso): ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su laplaciano (1)
Mostra Tutti

nabla

Enciclopedia on line

Operatore vettoriale, di simbolo ∇, avente componenti , mediante il quale, nell’analisi vettoriale, si esprimono facilmente il gradiente, la divergenza, il rotore e il laplaciano. Precisamente, il gradiente [...] f, e così la divergenza e il rotore della funzione vettoriale v sono espressi rispettivamente dal prodotto scalare e dal prodotto vettoriale di ∇ per v; il prodotto scalare di ∇ per sé stesso dà infine l’operatore laplaciano (che si indica con ∇2). ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE LAPLACIANO – PRODOTTO VETTORIALE – FUNZIONE VETTORIALE – ANALISI VETTORIALE – PRODOTTO SCALARE
Mostra altri risultati Nascondi altri risultati su nabla (2)
Mostra Tutti

dalembertiano

Dizionario delle Scienze Fisiche (1996)

dalembertiano dalembertiano 〈dalàm-〉 (o dalambertiano) [agg. Der. del cognome di J.-B. Le Rond detto d'Alembert] [ANM] L'operatore ∇2-v-2(ð2/ðt2), essendo ∇2 l'operatore laplaciano, v una costante e [...] t il tempo; è indicato con il simb. □; relativ. a una grandezza a in un riferimento cartesiano è □a=(ð2a/ðx2)+(ð2a/ðy2)+(ð2a/ðz2)-v-2(ð2a/ðt2)e il suo annullarsi significa che a si propaga per onde persistenti, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

poliarmonico

Dizionario delle Scienze Fisiche (1996)

poliarmonico poliarmònico [agg. (pl.m. -ci) Comp. di poli- e armonico] [ANM] Funzione p. (precis., funzione n-armonica): funzione soddisfacente certe condizioni di regolarità e tale da dare lo zero applicando [...] a essa n volte consecutive l'operatore laplaciano; è una generalizzazione della nozione di funzione armonica ordinaria (che porta allo zero applicando una sola volta a essa il laplaciano, cioè se considerata come argomento dell'equazione di Laplace). ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

metarmonico

Dizionario delle Scienze Fisiche (2012)

metarmonico metarmònico [agg. (pl.m. -ci) Comp. di meta- e armonico] [ANM] Funzione m.: ogni funzione f, di una o più variabili, che sia soluzione dell'equazione differenziale ∇2f+af=0, con ∇2 operatore [...] laplaciano e a costante reale; a seconda che a sia positiva oppure negativa si hanno, in partic., funzioni epiarmoniche oppure funzioni ipoarmoniche, mentre se a è nulla, si hanno le ordinarie funzioni armoniche. ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

Laplace Pierre-Simon de

Dizionario delle Scienze Fisiche (1996)

Laplace Pierre-Simon de Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] , dalla mancanza di una teoria adeguata relativa ai fenomeni in esame. ◆ [ANM] Trasformata di L.: v. oltre: Trasformazione di Laplace. ◆ [ANM] Trasformazione di L.: operazione che fa passare da una data funzione F(t) della variabile reale t, alla ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – ACCADEMIA DI FRANCIA – EQUAZIONI ELLITTICHE – FORZA GRAVITAZIONALE – CORRENTE ELETTRICA
Mostra altri risultati Nascondi altri risultati su Laplace Pierre-Simon de (4)
Mostra Tutti

Poisson Simeon-Denis

Dizionario delle Scienze Fisiche (1996)

Poisson Simeon-Denis Poisson 〈puasòn〉 Siméon-Denis [STF] (Pithiviers 1781 - Parigi 1840) Prof. di analisi matematica e di meccanica nell'École polytechnique (1802) e alla Sorbona di Parigi (1812). ◆ [...] ] Equazione di P.: è l'equazione lineare alle derivate parziali seconde, non omogenea, ∇2V+kp=0, con ∇2 operatore laplaciano, V e p funzioni delle coordinate spaziali e k costante; è una delle equazioni fondamentali della fisica matematica, in quanto ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – EQUAZIONI DIFFERENZIALI ORDINARIE – DISTRIBUZIONE DI PROBABILITÀ – SOLUZIONI COLLOIDALI – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Poisson Simeon-Denis (2)
Mostra Tutti

parametro

Dizionario delle Scienze Fisiche (1996)

parametro paràmetro [Der. del fr. paramètre "quasi misura", comp. di para- "para-2" e -mètre "-metro"] [ALG] [ANM] Termine usato talora come equivalente a variabile indipendente (per es., p. reale, complesso), [...] ; se quest'ultima si riduce a Σixi2, si vede che è Δ₁≡|gradU| e che Δ₂ viene a coincidere con l'operatore laplaciano, Δ₂≡∇2. ◆ [ANM] P. differenziali di Beltrami: altro nome dei p. differenziali primo e secondo (v. sopra), in quanto introdotti da E ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – RELATIVITA E GRAVITAZIONE – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su parametro (1)
Mostra Tutti

ellittico

Enciclopedia on line

Botanica Si dice di un organo (per es., una foglia) quando il suo contorno ha quasi esattamente la forma di un ellisse, ha cioè i due estremi arrotondati; oppure, meno propriamente, quando i due estremi [...] parziali, che hanno la forma L f(x)=0 (➔ equazione). Un esempio di operatore e. che compare spesso in fisica è il Laplaciano ∇2= n∑i=1 ∂2−−−∂xi2 . Menzioniamo infine che la definizione di operatore e. può essere generalizzata per includere il caso in ... Leggi Tutto
CATEGORIA: ANATOMIA MORFOLOGIA CITOLOGIA – TEMI GENERALI – FISICA MATEMATICA – ANALISI MATEMATICA
TAGS: OPERATORI DIFFERENZIALI – LUNGHEZZA DI UN ARCO – FUNZIONE ANALITICA – FUNZIONE RAZIONALE – FUNZIONI ABELIANE

operatore

Dizionario delle Scienze Fisiche (1996)

operatore operatóre [Der. del lat. operator -oris "che compie operazioni" (→ operazione)] [ALG] [ANM] Ente che determina un'operazione da eseguirsi su un altro ente, quindi simb. di un'operazione o, [...] derivazione totale o parziale di una funzione o una serie di funzioni, quale, per es., l'o. dalembertiano, laplaciano, ecc. (→ le singole voci). ◆ [ANM] O. differenziale ellittico longitudinale: o. differenziale, definito su uno spazio fogliato, che ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su operatore (2)
Mostra Tutti
1 2
Vocabolario
laplaciano
laplaciano agg. – Che si riferisce all’astronomo e matematico fr. P.-S. de Laplace ‹laplàs› (1749-1827). Ipotesi cosmogonica l. (o di Laplace), ipotesi per la quale si suppone che il Sole fosse originariamente un immenso globo gassoso, o nebula,...
evoluzióne
evoluzione evoluzióne s. f. [dal lat. evolutio -onis, der. di evolvĕre, propr. «svolgere (il rotolo di papiro per leggere)»]. – 1. Nel sign. proprio, svolgimento, sviluppo, spiegamento; quindi, movimento ordinato a un fine: i due compagni...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali