• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
34 risultati
Tutti i risultati [47]
Matematica [34]
Fisica [21]
Geometria [15]
Fisica matematica [15]
Algebra [13]
Relativita e gravitazione [8]
Analisi matematica [5]
Storia della fisica [6]
Meccanica [6]
Meccanica quantistica [6]

La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria Umberto Bottazzini I fondamenti della geometria Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] ‒ che costituisce il fulcro di tutta l'indagine riemanniana ‒ partendo dall'assunzione del movimento rigido dei corpi, 'pura' geometria di posizione ‒ e dunque anche le geometrie metriche che ne derivano, come aveva a suo tempo mostrato Klein ... Leggi Tutto
CATEGORIA: GEOMETRIA

connessione

Dizionario delle Scienze Fisiche (1996)

connessione connessióne [Der. del lat. connessio -onis, dal lat. connexus (→ connesso) "l'essere connesso, il modo in cui si è connessi"] [ALG] [ANM] Generic., legame di dipendenza fra due o più grandezze [...] campi tensoriali e la nozione di trasporto parallelo: v. connessione: I 725 a. ◆ [ALG] C. riemanniana: c. affine definita su una varietà riemanniana M dotata di metrica g, tale che la derivata covariante di g sia nulla. ◆ [MCC] C. sella: v. sistemi ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA QUANTISTICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su connessione (1)
Mostra Tutti

metrico

Dizionario delle Scienze Fisiche (2012)

metrico mètrico [agg. (pl.m. -ci) Der. del gr. metrikós, da métron "misura"] [ALG] Relativo a una metrica, cioè al concetto di misura della distanza in uno spazio. ◆ [MTR] (a) Che concerne una misurazione [...] , l'ordinaria geometria euclidea e, in campo più elevato, la geometria riemanniana. ◆ [ELT] Onde m.: le onde radio la cui lunghezza d 2.1. ◆ [ALG] Proprietà m.: proprietà derivanti da una metrica. ◆ [ALG] Questioni m., o problemi m.: questioni che, a ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – METROLOGIA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su metrico (2)
Mostra Tutti

segnatura

Dizionario delle Scienze Fisiche (1996)

segnatura segnatura [Der. del lat. signatura, da signare "firmare"] [FSN] Fattore che compare nella legge dell'ampiezza di diffusione di particelle elementari: v. matrice S: III 648 c. ◆ [ALG] S. di [...] tra il numero degli autovalori positivi e quello degli autovalori negativi della metrica. ◆ [ALG] S. lorentziana: dicesi della metrica di una varietà M pseudo-riemanniana quando localmente lo spazio tangente a M abbia, in qualche base, come ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA NUCLEARE – ALGEBRA
Mostra altri risultati Nascondi altri risultati su segnatura (1)
Mostra Tutti

minkowskiano

Dizionario delle Scienze Fisiche (1996)

minkowskiano minkowskiano 〈minkofskiano〉 [agg. Der. del cognome di H. Minkowski] [RGR] Metrica m.: lo stesso che metrica di Minkowski: → Minkowski, Hermann. ◆ [ALG] [RGR] Sistema di riferimento m. locale: [...] sistema di riferimento in un punto di una varietà riemanniana tale che il suo tensore metrico è il tensore minkowskiano. ◆ [ALG] [RGR] Tensore m.: tensore metrico diagonale con elementi sulla diagonale (1, -1, -1, -1). ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – RELATIVITA E GRAVITAZIONE – ALGEBRA
1 2 3 4
Vocabolario
mètrica
metrica mètrica s. f. [femm. sostantivato dell’agg. metrico; nel sign. 1, cfr. gr. μετρική (sottint. τέχνη «arte»)]. – 1. La tecnica della versificazione, cioè il complesso delle leggi che regolano la composizione dei versi e delle strofe;...
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali