• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
12 risultati
Tutti i risultati [129]
Geometria [12]
Matematica [45]
Algebra [19]
Temi generali [13]
Arti visive [10]
Fisica [9]
Biologia [10]
Diritto [10]
Informatica [8]
Fisica matematica [8]

L'Ottocento: matematica. Calcolo geometrico

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo geometrico Paolo Freguglia Gert Schubring Calcolo geometrico Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] la motivazione di fondare su basi coerenti la moltiplicazione tra grandezze in generale non era più un problema teoria in stretta relazione con il calcolo vettoriale, la teoria delle matrici. I primi elementi di questa teoria si trovano in Lagrange e ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

gruppo

Enciclopedia on line

Biologia G. sanguigni Strutture antigeniche presenti sulla superficie dei globuli rossi e riconosciute da anticorpi specifici (➔ gruppi sanguigni). G. tissutali Insieme di individui istocompatibili, tra [...] o modulo. Le quattro proprietà sopra indicate si possono scrivere in forma moltiplicativa: 1) ab=c; 2) (ab)c=a(bc); 3 geometria); b) g. di matrici (quadrate, di un dato ordine punto dello spazio e di distanza tra due punti permettono di introdurre nel ... Leggi Tutto
CATEGORIA: BIOCHIMICA – BIOINGEGNERIA – FISIOLOGIA GENERALE – ISTOLOGIA – CHIMICA INORGANICA – CHIMICA ORGANICA – ALGEBRA – ANALISI MATEMATICA – GEOMETRIA – FISIOLOGIA UMANA – ETOLOGIA – SISTEMATICA E ZOONIMI – ISTITUZIONI ENTI MINISTERI – AZIENDE IMPRESE SOCIETA INDUSTRIE – PSICOTERAPIA – ANTROPOLOGIA CULTURALE – SOCIOLOGIA – FORME E STRUMENTI DI GOVERNO – POLITOLOGIA – ELETTROTECNICA
TAGS: RADICI N-ESIME DELL’UNITÀ – CORRISPONDENZA BIUNIVOCA – GENERATORI DI UN GRUPPO – NUMERI INTERI RELATIVI – MECCANICA QUANTISTICA
Mostra altri risultati Nascondi altri risultati su gruppo (7)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] alto, de- finiamo una moltiplicazione di differenziali soggetta alla seguente e questo genera una corrispondenza biunivoca tra l'insieme delle metriche riemanniane su r, s=1, ..., N, (23) cioè la matrice (ωsr) è antisimmetrica. Dalle (19) e (22) ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Geometria non commutativa

Enciclopedia del Novecento II Supplemento (1998)

Geometria non commutativa Irving E. Segal Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] L2 se il prodotto interno 〈S,T〉 tra due elementi di C viene definito come e( più semplice è l'algebra di tutte le matrici n × n con a* interpretato come l z) è l'aggiunto di C0 (z), l'operazione di moltiplicazione a sinistra per z su C+, e C(z) è ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA DEL CAMPO QUANTISTICO – ELETTRODINAMICA QUANTISTICA – OPERATORE LINEARE CONTINUO – TEORIA DELL'INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] 2), formato dalle matrici tali che N tra gli elementi di un gruppo astratto e i punti di una varietà proiettiva liscia A induce una struttura di gruppo anche sui punti di A. Siano A × A → A e A → A le applicazioni che definiscono la moltiplicazione ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] a M={a,b}, è quella delle matrici 2×2: In altre parole, non richiediamo dove i bn sono elementi dell'algebra [11] e la moltiplicazione è definita da: [14] UhU-1=h ∙ R-1θ tale che φ(1)=1, La distanza tra due stati è data da Il significato di ... Leggi Tutto
CATEGORIA: GEOMETRIA

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] matrici. Si tratta delle matrici (Mab) = (Mab) = M, dove M è la matrice 〈x∣y〉 〈x∣ = 〈x∣y〉 P. A meno di moltiplicazione per uno scalare, P è un operatore di proiezione. In questo linguaggio, su tutti i valori di j (k) tra 1 e m, mentre k varia da 1 ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] si denoti con (gij) la matrice inversa della matrice (gij). Si verifica allora che la moltiplicazione in H2*(V), indotta per dualità per i=1,…,n. Si ha una biezione di insiemi dove un isomorfismo tra (f(p1,…,pn)) e (f(p′1,…,p′n)) è una applicazione ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] F induce un'applicazione tra i p-cicli per 0≤p≤n che si può codificare con una matrice i cui elementi dicano quali (N), che è un omomorfismo f*:ℤ→ℤ. Questo omomorfismo è una moltiplicazione per un intero, e si può dimostrare che questo intero, f ... Leggi Tutto
CATEGORIA: GEOMETRIA
1 2
Vocabolario
prodótto²
prodotto2 prodótto2 s. m. [part. pass. sostantivato di produrre]. – 1. Genericam., tutto ciò che la terra produce o che costituisce il risultato di una qualsiasi attività umana: p. agricoli, vegetali; i p. della terra, del suolo, dei campi,...
similitùdine
similitudine similitùdine s. f. [dal lat. similitudo -dĭnis, der. di simĭlis «simile»]. – 1. a. letter. Somiglianza, soprattutto in locuzioni, ormai ant., come per s., a s. di, ecc. b. Figura retorica che mira a chiarire (logicamente o fantasticamente)...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali