• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
lingua italiana
26 risultati
Tutti i risultati [412]
Storia della fisica [26]
Matematica [173]
Algebra [91]
Fisica [72]
Analisi matematica [68]
Fisica matematica [62]
Temi generali [40]
Storia della matematica [27]
Statistica e calcolo delle probabilita [21]
Ingegneria [17]

riducibilita

Dizionario delle Scienze Fisiche (2012)

riducibilita riducibilità [Der. di riducibile "capacità di essere ridotto o di ridursi"] [ALG] [ANM] Proprietà di un polinomio, di un'equazione algebrica o altro ente di essere riducibile. ◆ [ALG] [FAF] [...] Assioma di r.: introdotto da B. Russell, si può enunciare dicendo che per ogni proprietà appartenente a un ordine superiore al più basso c'è una proprietà equiestensiva (cioè posseduta dagli stessi oggetti) ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – EPISTEMOLOGIA – METAFISICA

Taylor Brook

Dizionario delle Scienze Fisiche (1996)

Taylor Brook Taylor 〈tèilë〉 Brook [STF] (Edmonton 1865 - Londra 1731) Matematico e segretario (1714) della Royal Society di Londra. ◆ [ANM] Formula di T., polinomio di T. e serie di T.: v. sviluppi in [...] serie: VI 63 b, e, 64 d. ◆ [ANM] Teorema di T.: v. funzioni di variabile complessa: II 777 d ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: ROYAL SOCIETY – EDMONTON – LONDRA

Schlafli Ludwig

Dizionario delle Scienze Fisiche (1996)

Schlafli Ludwig Schläfli 〈šlèfli〉 Ludwig [STF] (Burgdorf, Berna, 1814 - Berna 1895) Prof. di matematica nell'univ. di Berna; socio straniero dei Lincei (1883). ◆ [ANM] Formula di S.: la rappresentazione [...] integrale del generico polinomio di Legendre, Pn(z)=(2πi)-1∫γ(t2-1)n[2n(t-z)n+1]-1dt, con i unità immaginaria, ove la curva d'integrazione γ è una qualunque circonferenza contenente il punto z, percorsa nel verso antiorario. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: UNITÀ IMMAGINARIA – MATEMATICA – BURGDORF – BERNA
Mostra altri risultati Nascondi altri risultati su Schlafli Ludwig (1)
Mostra Tutti

Laguerre Edmond-Nicolas

Dizionario delle Scienze Fisiche (1996)

Laguerre Edmond-Nicolas Laguerre 〈lag✄èr〉 Edmond-Nicolas [STF] (Bar-le-Duc 1834 - m. 1886) Ufficiale di artiglieria, poi prof. di geometria nell'Accademia delle scienze di Parigi (1874). ◆ [ANM] Equazione [...] 1-x)y'+ay=0, con a costante reale; nel caso particolare che a sia un numero naturale n, una sua soluzione è il polinomio (polinomio di L.) definito dalla formula Ln(x)=expx dn[xn exp(-x)]/dxn, oppure, per ricorrenza, dalla formula nLn=(2n-x-1)Ln-1 ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: ACCADEMIA DELLE SCIENZE DI PARIGI – EQUAZIONE DIFFERENZIALE – MECCANICA QUANTISTICA – CAMPO REALE – POLINOMIO
Mostra altri risultati Nascondi altri risultati su Laguerre Edmond-Nicolas (1)
Mostra Tutti

Hensel Kurt

Dizionario delle Scienze Fisiche (1996)

Hensel Kurt Hensel 〈hènsel〉 Kurt [STF] (Königsberg 1861 - Marburgo 1941) Prof. di matematica nell'univ. di Marburgo (1902). ◆ [ANM] Lemma di H.: dato un anello A con ideale massimale I, lemma soddisfatto [...] A se ogni fattorizzazione di un polinomio P(x) su A può essere ottenuta da una fattorizzazione della restrizione di P(x) all'anello A modulo I; ha importanti applicazioni nell'algebra commutativa e dunque nella manipolazione algebrica dei polinomi. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA

Ruffini Paolo

Dizionario delle Scienze Fisiche (1996)

Ruffini Paolo Ruffini Paolo [STF] (Valentano, Viterbo, 1765 - Modena 1822) Prof. di matematica nell'univ. di Modena (1797). ◆ [ALG] Regola di R.: regola, semplice da usare ma macchinosa da spiegare (oggi [...] superata dal calcolo elettronico), per eseguire rapidamente la divisione di un polinomio qualunque in una variabile x per il binomio x-a, con a costante (x sempre diverso da a). ◆ [ALG] Teorema di R.-Abel: l'equazione algebrica generale è risolubile ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA
TAGS: EQUAZIONE ALGEBRICA – PAOLO RUFFINI – MATEMATICA – VALENTANO – POLINOMIO
Mostra altri risultati Nascondi altri risultati su Ruffini Paolo (5)
Mostra Tutti

Schwarz Karl Hermann Amandus

Dizionario delle Scienze Fisiche (1996)

Schwarz Karl Hermann Amandus Schwarz 〈švarz〉 Karl Hermann Amandus [STF] (Hermsdorf, Slesia, 1843 - Berlino 1921) Prof. nelle univ. di Halle (1867), Zurigo (1869), Gottinga (1875), Berlino (1892). ◆ [ANM] [...] Classe di S.: l'insieme delle funzioni f(x):R→R di classe C∞ che tendono a zero più rapidamente di ogni polinomio, cioè tali che, per ogni n∈N, limn→∞xn f(x)=0. ◆ [ANM] Disuguaglianza di S. o di S.-Hölder: fondamentale nella teoria delle funzioni, è ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: POLINOMIO – GOTTINGA – BERLINO – ZURIGO – SLESIA
Mostra altri risultati Nascondi altri risultati su Schwarz Karl Hermann Amandus (2)
Mostra Tutti

Bernstein Benjamin Abram

Dizionario delle Scienze Fisiche (1996)

Bernstein Benjamin Abram Bernstein 〈bèrnstain〉 Benjamin Abram [STF] (Posvol, Lituania, 1881 - Berkeley, California 1968) Prof. di matematica nell'univ. di Berkeley (1928). ◆ [ANM] Polinomi di B.: introdotti [...] di B. relativo a f(x) e a I è Bn(x)=Σk=nk=0 [f(k/n)] (nk)xk(1-x)n-k. I polinomi di B. relativi a una funzione f(x) costituiscono una successione che converge uniformemente a f(x), e anche la successione delle loro derivate di un ordine qualsiasi ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA

riduzione

Dizionario delle Scienze Fisiche (1996)

riduzione riduzióne [Der. del lat. reductio -onis "atto ed effetto del ridurre e del ricondurre", dal part. pass. reductus di reducere (→ ridotto)] [ALG] [ANM] I vari signif. particolari del termine [...] tutti in genere al concetto di operazione che conduce a una semplificazione; per es.: (a) r. dei termini simili (in un polinomio) consiste nel fare la somma algebrica dei monomi simili, sostituendo un solo monomio al posto di essi; (b) r. di una ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su riduzione (2)
Mostra Tutti

Pfaff Johann Friedrich

Dizionario delle Scienze Fisiche (1996)

Pfaff Johann Friedrich Pfaff 〈pfaf〉 Johann Friedrich [STF] (Stoccarda 1765 - Halle 1825) Prof. di matematica nell'univ. di Helmstädt (1788) e poi di Halle (1810). ◆ [ANM] Forma differenziale di P.: forma [...] differenziale lineare ΣiXidxi nella quale i coefficienti Xi sono funzioni delle variabili xi; è dunque sinon. di 1-forma differenziale: v. forme differenziali: II 686 c. ◆ [ALG] Polinomio di P.: lo stesso che pfaffiano. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: MATEMATICA – STOCCARDA – PFAFFIANO – POLINOMIO – HALLE
Mostra altri risultati Nascondi altri risultati su Pfaff Johann Friedrich (2)
Mostra Tutti
1 2 3
Vocabolario
polinòmio
polinomio polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
grado¹
grado1 grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali