• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
lingua italiana
98 risultati
Tutti i risultati [1783]
Analisi matematica [98]
Matematica [271]
Fisica [202]
Temi generali [200]
Economia [148]
Diritto [144]
Medicina [137]
Biologia [106]
Scienze demo-etno-antropologiche [86]
Fisica matematica [93]

equazione di Euler-Lagrange

Enciclopedia della Scienza e della Tecnica (2008)

equazione di Euler-Lagrange Daniele Cassani Per funzioni reali di variabile reale f: ℝ→ℝ una condizione necessaria per avere un massimo o un minimo in un punto x0 dove f è derivabile, è che x0 risolva [...] valgano agli estremi dell’intervallo [a,b] le condizioni u(a)=α, u(b)=β. Condizione necessaria affinché z(x) (nella classe di funzioni considerata) sia un massimo, un minimo o più in generale un punto critico per il funzionale F, è che z risolva l ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE – PUNTO CRITICO – F =∫ΒΑℒ

distribuzione

Enciclopedia on line

Economia Attività che provvede alla collocazione sul mercato delle merci e dei servizi, e quindi l’insieme dei punti di vendita che ne assicurano agli acquirenti la disponibilità. Nell’ingegneria gestionale [...] studio delle equazioni differenziali. Limitandoci per semplicità al caso di una sola variabile, si consideri una funzione reale ϕ(x) di una variabile reale che sia di classe C∞ (cioè dotata delle derivate di tutti i possibili ordini) e che sia nulla ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – AZIENDE IMPRESE SOCIETA INDUSTRIE
TAGS: MOTORI A COMBUSTIONE INTERNA – CONCORRENZA MONOPOLISTICA – FUNZIONE DI RIPARTIZIONE – ORGANIZZAZIONE AZIENDALE – SUCCESSIONE DI FUNZIONI
Mostra altri risultati Nascondi altri risultati su distribuzione (2)
Mostra Tutti

analitico

Enciclopedia on line

Filosofia Nella logica kantiana, giudizio a. è quello nel quale il concetto del predicato è implicitamente contenuto nel concetto del soggetto, e in cui quindi basta analizzare il soggetto per ricavarne [...] ecc., mentre le lingue sintetiche usano esprimere tali rapporti per mezzo di desinenze e variazioni tematiche. Matematica Una funzione della variabile reale x, f (x), si dice funzione a. reale nell’intervallo (a−d, a+d) se in esso è sviluppabile ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – DOTTRINE TEORIE E CONCETTI
TAGS: FUNZIONI DI VARIABILE COMPLESSA – CONDIZIONI DI CAUCHY-RIEMANN – PRINCIPIO D’IDENTITÀ – FUNZIONI ANALITICHE – FUNZIONE DERIVABILE
Mostra altri risultati Nascondi altri risultati su analitico (3)
Mostra Tutti

monotona, funzione

Enciclopedia on line

monotona, funzione In matematica, una funzione f(x), reale di una variabile reale, si dice m. se per ogni coppia di valori x′, x″ del suo insieme di definizione, per la quale sia x′<x″, risulta f(x′)≤f(x″) [...] decrescente oppure crescente; f′(x)≤0 se f(x) è non crescente oppure decrescente. Per una successione a1, a2,... an,... di numeri reali, valgono le analoghe definizioni e denominazioni: se an≤an+1, la successione si dice m. non decrescente; se an< ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: INSIEME DI DEFINIZIONE – FUNZIONE CRESCENTE – FUNZIONE INVERSA – DISUGUAGLIANZE – NUMERI REALI
Mostra altri risultati Nascondi altri risultati su monotona, funzione (2)
Mostra Tutti

fattoriale

Enciclopedia on line

In matematica, f. di un numero intero positivo n è il prodotto dei numeri interi da 1 a n, e si suole indicare con il simbolo n! . Si ha dunque: n! = 1‧2‧...‧(n−1)‧n. Esiste poi una funzione analitica, [...] il valore intero positivo (n+1) della variabile, coincide con n! ossia: Γ(n+1)=n!. Mediante questa formula è possibile definire il fattoriale anche per qualsiasi valore reale di n. Per grandi valori di n si hanno per n! varie espressioni approssimate ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE ANALITICA – NUMERI INTERI – MATEMATICA
Mostra altri risultati Nascondi altri risultati su fattoriale (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] aij, e i sistemi infiniti di variabili numeriche x1,x2,…,y1,y2,… tali che le serie infinite [7] ∣x1∣2+∣x2∣2+…,   ∣y1∣2+∣y2∣2+… fossero convergenti. Hilbert dedicò grande attenzione al caso in cui tutti i numeri sono reali, ma si occupò anche del ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] o, più in generale, da un numero finito di variabili reali, e possono essere risolti utilizzando i metodi di base del calcolo differenziale. Più interessanti sono i problemi di massimo o di minimo per grandezze che dipendono da enti matematici che ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] Contrariamente al trattamento classico, nelle concezioni attuali le funzioni reali di una variabile reale non costituiscono più un capitolo speciale e introduttivo, ma intervengono solo di tanto in tanto svolgendo un ruolo puramente strumentale. Per ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Laplace Pierre-Simon de

Dizionario delle Scienze Fisiche (1996)

Laplace Pierre-Simon de Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] L.: operazione che fa passare da una data funzione F(t) della variabile reale t, alla funzione f(s) della variabile complessa s, detta trasformata di L. della F(t): v. trasformazioni integrali: VI 303 a. L'operazione e la funzione ora ricordate sono ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – ACCADEMIA DI FRANCIA – EQUAZIONI ELLITTICHE – FORZA GRAVITAZIONALE – CORRENTE ELETTRICA
Mostra altri risultati Nascondi altri risultati su Laplace Pierre-Simon de (4)
Mostra Tutti

Gauss Karl Friedrich

Dizionario delle Scienze Fisiche (1996)

Gauss Karl Friedrich Gauss 〈gàus〉 Karl Friedrich [STF] (Brunswick 1777 - Gottinga 1855) Prof. di astronomia nell'univ. di Gottinga e direttore del locale Osservatorio astronomico (1807). ◆ [ALG] Applicazione [...] di G.: sono i numeri complessi con la parte reale e di G. gravitazionale: v. gravitazione: III 98 f. ◆ [ANM] Teorema di G.-Green: v. variazioni, calcolo delle: VI 462 b. ◆ [ANM] Teorema di moltiplicazione di G.-Legendre: v. funzioni di variabile ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – METODO DEI MINIMI QUADRATI – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – SERIE IPERGEOMETRICA
Mostra altri risultati Nascondi altri risultati su Gauss Karl Friedrich (5)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 10
Vocabolario
variàbile
variabile variàbile agg. e s. f. [dal lat. tardo variabĭlis, der. di variare «variare»]. – 1. agg. Che varia, che può variare, che è soggetto a variare: grandezza, valore, norma v.; il prezzo è v. secondo le stagioni e la richiesta; quindi...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali