• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
5 risultati
Tutti i risultati [57]
Fisica [5]
Matematica [28]
Geometria [8]
Biografie [8]
Storia della matematica [7]
Analisi matematica [5]
Filosofia [4]
Algebra [4]
Storia della fisica [3]
Temi generali [3]

varieta

Dizionario delle Scienze Fisiche (1996)

varieta varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] 501 d. ◆ [RGR] V. riemanniana: concetto che sorge con lo scopo principale di estendere a spazi arbitrari le classiche proprietà metriche degli spazi euclidei: v. varietà riemanniane. ◆ [RGR] V. riemanniana isotropa: v. cosmologici, modelli: I 804 c ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su varieta (6)
Mostra Tutti

L'Ottocento: matematica. Geometria superiore

Storia della Scienza (2003)

L'Ottocento: matematica. Geometria superiore David E. Rowe Geometria superiore Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] Questo termine vago portava con sé riferimenti che potevano richiamare di volta in volta gli spazi euclidei a più dimensioni, gli spazi proiettivi, le varietà riemanniane o, infine, aspetti geometrici della meccanica o della termodinamica. Così, fino ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – GEOMETRIA – STORIA DELLA MATEMATICA

Pitagora

Dizionario delle Scienze Fisiche (1996)

Pitagora Pitàgora [STF] Matematico e filosofo del 6° sec. a.C., nato a Samo e trasferitosi poi nella Magna Grecia, a Crotone. ◆ [ALG] Teorema di P.: uno dei primi teoremi della geometria classica, secondo [...] di un triangolo rettangolo è equivalente alla somma dei quadrati costruiti sui cateti; ha numerose generalizzazioni (teorema di P. generalizzato, n-dimensionale, ecc.) ed è alla base del concetto di distanza negli spazi euclidei o pseudoeuclidei. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA
TAGS: SPAZI EUCLIDEI – MAGNA GRECIA – GEOMETRIA – CROTONE – CATETI

Relativita

Enciclopedia del Novecento (1982)

RELATIVITÀ Christian Moller Tullio Regge Eugenio Garin Relatività di Christian Møller sommario: 1. Introduzione e panorama storico: a) il principio di relatività speciale. Sistemi inerziali; b) relatività [...] , anche le più accurate, eseguite sulla Terra, non hanno mai rilevato alcuna deviazione dai teoremi della geometria euclidea. In uno spazio euclideo si può introdurre un sistema di coordinate cartesiane S: (x, y, Z) in molti modi diversi, scegliendo ... Leggi Tutto
CATEGORIA: RELATIVITA E GRAVITAZIONE – DOTTRINE TEORIE E CONCETTI – METAFISICA
TAGS: LOGICA DELLA SCOPERTA SCIENTIFICA – PRINCIPIO DI ESCLUSIONE DI PAULI – SISTEMA DI COORDINATE CARTESIANE – MOMENTO ANGOLARE INTRINSECO – SPOSTAMENTO VERSO IL ROSSO
Mostra altri risultati Nascondi altri risultati su Relativita (8)
Mostra Tutti

L'Età dei Lumi: la fine della conoscenza naturale 1700-1770. Concetti generali di materia e moto

Storia della Scienza (2002)

L'Eta dei Lumi: la fine della conoscenza naturale 1700-1770. Concetti generali di materia e moto James Evans Concetti generali di materia e moto Nel 1726, in seguito ai contrasti con le autorità francesi, [...] degli esempi più chiari è il destino subito dalla geometria. Kant pensava che, pur essendo lo spazio un'entità ideale, la geometria euclidea fosse ugualmente una verità necessaria e universale. Nel XIX sec., gli studiosi di geometria pura inventarono ... Leggi Tutto
CATEGORIA: STORIA DELLA FISICA – TEMI GENERALI
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
euclidèo
euclideo euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali