• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
39 risultati
Tutti i risultati [270]
Analisi matematica [39]
Matematica [139]
Fisica [41]
Algebra [40]
Storia della matematica [33]
Geometria [23]
Fisica matematica [24]
Temi generali [19]
Biografie [18]
Filosofia [16]

operatore di proiezione

Enciclopedia della Scienza e della Tecnica (2008)

operatore di proiezione Luca Tomassini Sia ℋ uno spazio vettoriale e P un’applicazione lineare (operatore) di ℋ in sé. Se P=P2 allora P è detto operatore di proiezione. Di particolare importanza è il [...] prodotto scalare (∙,∙) che induce una norma definita da , ossia è uno spazio di Hilbert ℋ. Un operatore di proiezione P hermitiano (autoaggiunto), ovvero tale che P*=P o equivalentemente (x,Py)=(Px,y) per ogni x,y∈ℋ, è detto proiettore ortogonale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: COMPLEMENTO ORTOGONALE – APPLICAZIONE LINEARE – OPERATORI HERMITIANI – SOTTOSPAZIO LINEARE – FUNZIONI MISURABILI
Mostra altri risultati Nascondi altri risultati su operatore di proiezione (5)
Mostra Tutti

trasformata di Fourier

Enciclopedia della Scienza e della Tecnica (2008)

trasformata di Fourier Luca Tomassini Una trasformazione integrale che mappa una funzione a valori complessi f(x):ℝn→ℂ nella sua corrispondente trasformata di Fourier (detta anche funzione spettrale [...] [1] esiste, ma inoltre ∣∣f∼(p)∣∣2=∣∣f(x)∣∣2: la trasformata di Fourier definisce un operatore lineare isometrico (e dunque sempre invertibile) dello spazio di Hilbert L2(ℝn,ℂ) delle funzioni a quadrato sommabile in sé. Dalla definizione è immediato ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – OPERATORE LINEARE CONTINUO – EQUAZIONI DIFFERENZIALI – FUNZIONI GENERALIZZATE – EQUAZIONI ALGEBRICHE
Mostra altri risultati Nascondi altri risultati su trasformata di Fourier (1)
Mostra Tutti

trasformata di Laplace

Enciclopedia della Scienza e della Tecnica (2008)

trasformata di Laplace Luca Tomassini Nozione introdotta da Pierre-Simon de Laplace nel suo famoso Théorie analitique des probabilités (1812) e da lui utilizzata per risolvere equazioni differenziali [...] ’ultima, che si è rivelata fondamentale per es. nella teoria dei campi quantistica, dove i campi stessi sono appunto definiti come distribuzioni con valori nello spazio degli operatori (non-limitati) su uno spazio di Hilbert ℋ. → Equazioni funzionali ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE A VARIAZIONE LIMITATA – INTEGRABILE SECONDO LEBESGUE – PIERRE-SIMON DE LAPLACE – EQUAZIONI DIFFERENZIALI – ASCISSA DI CONVERGENZA
Mostra altri risultati Nascondi altri risultati su trasformata di Laplace (2)
Mostra Tutti

serie di Fourier

Enciclopedia della Scienza e della Tecnica (2008)

serie di Fourier Luca Tomassini L’espressione di una funzione f di una o più variabili reali per mezzo di un sistema di funzioni ortonormali. Più precisamente, sia F uno spazio vettoriale (completo) [...] molte applicazioni matematiche e fisiche giocano un ruolo preminente funzioni di una variabile reale con periodo 2π, ovvero tali che f(0)=f(2π). Lo spazio F è allora lo spazio di Hilbert L2([0,2π]) delle funzioni a quadrato sommabile sull’intervallo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – FUNZIONI TRIGONOMETRICHE – COEFFICIENTI DI FOURIER – TEOREMA DI DIRICHLET – SPAZIO DI HILBERT
Mostra altri risultati Nascondi altri risultati su serie di Fourier (1)
Mostra Tutti

traccia

Enciclopedia della Scienza e della Tecnica (2008)

traccia Luca Tomassini Nel caso di un operatore lineare (matrice quadrata) di uno spazio vettoriale euclideo n-dimensionale in sé A=∣∣aij∣∣ (con aij numeri complessi e i,j=1,...,n), la traccia di A [...] dalla definizione precedente. Se A è un operatore hermitiano su uno spazio di Hilbert ℋ con spettro discreto e autovalori λi (per es., un operatore compatto) si dirà traccia di A la somma della serie È importante notare che, a differenza ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE EUCLIDEO – OPERATORE HERMITIANO – SPAZIO DI HILBERT – OPERATORE LINEARE – PRODOTTO SCALARE
Mostra altri risultati Nascondi altri risultati su traccia (4)
Mostra Tutti

coniugata di Fenchel

Enciclopedia della Scienza e della Tecnica (2008)

coniugata di Fenchel Arrigo Cellina Sia f una funzione convessa definita su uno spazio di Hilbert X; si chiama polare di f, o trasformata o coniugata di Fenchel, o di Legendre, la funzione f * definita [...] per ogni x∈X e z∈X′, 〈z, x〉 ≤ f (x) + f *(z). Per es., la coniugata della funzione f(x)=(1/p)∥x∥π (dove ∥x∥ indica la norma di x) è la funzione f*(z)=(1/p)∥z∥ϑ con (1/p)+(1/q)=1 e la disuguaglianza precedente diventa 〈z, x〉 ≤ (1/p) ∥x∥π + (1/q) ∥z∥ϑ ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE CONVESSA – SPAZIO DI HILBERT – FUNZIONI AFFINI

ortogonale

Dizionario delle Scienze Fisiche (1996)

ortogonale ortogonale [Der. del lat. orthogonus, dal gr. orthog✄ònios "ad angolo retto", comp. di orthós "dritto" e g✄onía "angolo"] [ALG] Qualifica di ciascuno di due enti che formano tra loro un angolo [...] (v. oltre). ◆ [ALG] Fibrato o.: v. fibrati: II 571 b. ◆ [ANM] Funzioni o.: due funzioni f(x) e g(x) di uno spazio di Hilbert dotato di prodotto scalare (f,g) quando risulti (f,g)=0. ◆ [ALG] Gruppo o.: il gruppo delle matrici quadrate o. (v. oltre ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

normale

Dizionario delle Scienze Fisiche (1996)

normale normale [agg. Der. di norma] [LSF] Che segue la norma o una regola generale, anche nel senso di presentare caratteristiche medie (per es., obiettivo fotografico n. è quello che ha un angolo di [...] dalla retta). ◆ [ANM] Operatore n.: operatore lineare A definito su uno spazio di Hilbert tale che A∗A=AA∗, dove A∗ è l'aggiunto di A (v. algebre di operatori: I 95 a). ◆ [PRB] Valore n.: di una distribuzione, lo stesso che moda della distribuzione. ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – METROLOGIA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA

hermitiano

Dizionario delle Scienze Fisiche (1996)

hermitiano hermitiano [agg. e s. Der. del cognome di C. Hermite] (a) [ALG] [ANM] Qualifica di enti legati in qualche modo a forme h. e a matrici h. (v. oltre): metriche h., operatore h., prodotti h., [...] B, B è un operatore hermitiano. ◆ [ANM] Operatore h., o hermitiano s.m.: operatore lineare definito in un sottoinsieme D(a) denso in uno spazio di Hilbert H, tale che per ogni x, y in D(a) si ha (Ax,y)=(x,Ay); quando A è limitato, si può estendere l ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

unitario

Dizionario delle Scienze Fisiche (1996)

unitario unitàrio [agg. Der. di unità] [LSF] Che è u-guale all'unità, si fonda sull'unità o s'ispira a criteri di unità. ◆ [CHF] Nella tecnologia chimica, di trasformazioni per le quali possono essere [...] matrice quadrata A per la quale AA∗=A∗A=I, dove A∗ è la matrice coniugata trasposta di A e I è la matrice identità. ◆ [ANM] Operatore u.: operatore lineare A definito su uno spazio di Hilbert H tale che per ogni coppia a, b in H si ha (Aa, Ab)=(a, b ... Leggi Tutto
CATEGORIA: TEMI GENERALI – FISICA MATEMATICA – METROLOGIA – ALGEBRA – ANALISI MATEMATICA
1 2 3 4
Vocabolario
hilbertiano
hilbertiano 〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali