• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
18 risultati
Tutti i risultati [92]
Analisi matematica [17]
Matematica [54]
Fisica [25]
Geometria [17]
Fisica matematica [17]
Algebra [17]
Storia della matematica [12]
Meccanica [8]
Meccanica dei fluidi [8]
Meccanica quantistica [8]

spazio vettoriale topologico

Enciclopedia della Scienza e della Tecnica (2008)

spazio vettoriale topologico Luca Tomassini Lo sviluppo di settori dell’analisi funzionale, quali per esempio la teoria delle distribuzioni, ha mostrato che in molti casi è utile considerare spazi lineari [...] ;0 tale che λx∈U per ∣λ−λ0∣〈ε e x∈V. Il legame esistente tra la topologia e le operazioni algebriche sullo spazio S pone sulla topologia stessa restrizioni estremamente rigorose: non solo essa può essere assegnata tramite un sistema di intorni dello ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEORIA DELLE DISTRIBUZIONI – SISTEMA DI INTORNI – ANALISI FUNZIONALE – NUMERI COMPLESSI – SPAZI VETTORIALI
Mostra altri risultati Nascondi altri risultati su spazio vettoriale topologico (1)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] Nikolaevič Kolmogorov (1903-1987) nel 1934 e di von Neumann nel 1935, al concetto di spazio lineare topologico. Nello studio di questi spazi fu decisivo il riconoscimento dell'importanza della convessità e del ruolo degli iperpiani (definiti da ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

spazio delle distribuzioni

Enciclopedia della Scienza e della Tecnica (2008)

spazio delle distribuzioni Luca Tomassini Una generalizzazione del concetto classico di spazio di funzioni, la cui necessità si presenta in molti problemi fisici e matematici. Il concetto di distribuzione [...] uso di distribuzioni di valori possibili. Formalmente, una distribuzione è definita come un funzionale lineare continuo φ su un qualche spazio vettoriale topologico F di funzioni (dette funzioni test) sufficientemente regolari: (a) φ(f1+f2)=φ(f1 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: INFINITAMENTE DIFFERENZIABILI – SPAZIO VETTORIALE TOPOLOGICO – FUNZIONALE LINEARE CONTINUO – FUNZIONALE LINEARE – SUPPORTO COMPATTO

spazio duale

Enciclopedia della Scienza e della Tecnica (2008)

spazio duale Luca Tomassini Dato uno spazio vettoriale reale (o complesso) X si definisce il suo duale Y come lo spazio vettoriale reale (o complesso) costituito dai funzionali lineari su X, ovvero [...] Y. In questo caso si dice che Y è lo spazio duale topologico di X e lo indicheremo con il simbolo X*. Il fatto che X separi i punti in X* segue dalla definizione stessa di funzionale lineare, il viceversa è invece una conseguenza di uno dei risultati ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE TOPOLOGICO – EQUAZIONI FUNZIONALI – SPAZIO VETTORIALE
Mostra altri risultati Nascondi altri risultati su spazio duale (1)
Mostra Tutti

spazio

Dizionario delle Scienze Fisiche (1996)

spazio spàzio [Der. del lat. spatium, probab. da patere "essere aperto"] [FAF] Con signif. intuitivo astratto e assoluto, il luogo illimitato in cui tutti gli oggetti materiali appaiono collocati, di [...] S. isomorfo: v. probabilità classica: IV 582 c. ◆ [ALG] S. lineare: lo stesso, a seconda dei casi, di s. proiettivo o di s. permette di introdurre il concetto di continuità delle funzioni: v. spazio topologico. ◆ [ALG] S. vettoriale: con rifer. a ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su spazio (10)
Mostra Tutti

varietà

Enciclopedia on line

Agraria Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...] v. algebrica su K è uno schema su Spec K, cioè uno spazio topologico con topologia di Zariski e opportuni morfismi su K. Per es., nel caso degli immersione se il differenziale di F è un’applicazione lineare iniettiva, è un embedding se è un’immersione ... Leggi Tutto
CATEGORIA: FORME E GENERI – SISTEMATICA E FITONIMI – ANALISI MATEMATICA – SISTEMATICA E ZOONIMI – AGRONOMIA E TECNICHE AGRARIE
TAGS: CAMPO ALGEBRICAMENTE CHIUSO – FUNZIONE DIFFERENZIABILE – RELAZIONE DI EQUIVALENZA – EQUAZIONI DIFFERENZIALI – COORDINATE PROIETTIVE
Mostra altri risultati Nascondi altri risultati su varietà (6)
Mostra Tutti

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] cioè una unione numerabile di insiemi rari. (Un insieme E in uno spazio topologico X si dice ‛raro' se la chiusura Ä di E non che f=0 q. o. Teorema di Riesz-Fischer: lo spazio lineare normato Lp è completo. Questo è proprio il teorema che invano i ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] questo caso, si dice che f è differenziabile in x0, l'applicazione lineare u∈ℒ(ℝm;ℝn) si chiama la sua derivata (totale) in x0 e Supponiamo ora che l'insieme X sia esso stesso uno spazio topologico; possiamo allora definire in ℬ(X) il sottospazio ℬ∞(X ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Equazioni funzionali

Enciclopedia della Scienza e della Tecnica (2007)

Equazioni funzionali Jacques-Louis Lions La teoria delle equazioni funzionali si è sviluppata a stretto contatto con i problemi via via sorti nelle varie scienze, a partire dalla meccanica, e dalla [...] tale scopo, conviene cercare di operare in uno spazio vettoriale topologico che sia sufficientemente grande, in modo che ogni 41] u0→u(t)=G(t)(u0) definisce un semigruppo lineare o no. Nel caso lineare si può scrivere formalmente [42] G(t)u0=e−tAu0 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – SPAZIO VETTORIALE TOPOLOGICO – EQUAZIONI DI NAVIER-STOKES
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti

operatore di proiezione

Enciclopedia della Scienza e della Tecnica (2008)

operatore di proiezione Luca Tomassini Sia ℋ uno spazio vettoriale e P un’applicazione lineare (operatore) di ℋ in sé. Se P=P2 allora P è detto operatore di proiezione. Di particolare importanza è il [...] 2P+P2=I−P, così che anche I−P è un proiettore (evidentemente ortogonale). Lo spazio lineare XI−P={x∈ℋ tali che (I−P)x=x} coincide con il complemento ortogonale di insiemi misurabili (boreliani) su uno spazio topologico X genera in un senso opportuno ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: COMPLEMENTO ORTOGONALE – APPLICAZIONE LINEARE – OPERATORI HERMITIANI – SOTTOSPAZIO LINEARE – FUNZIONI MISURABILI
Mostra altri risultati Nascondi altri risultati su operatore di proiezione (5)
Mostra Tutti
1 2
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
simplèsso
simplesso simplèsso s. m. [adattam. dell’ingl. simplex, sost. sviluppatosi dall’agg. simplex «semplice», che è dal lat. simplex -plĭcis come l’ital. semplice]. – In matematica, generalizzazione dei concetti di segmento, triangolo, tetraedro:...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali