• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
Le parole valgono
lingua italiana
396 risultati
Tutti i risultati [3021]
Matematica [396]
Fisica [527]
Biografie [430]
Temi generali [333]
Medicina [215]
Storia [180]
Biologia [175]
Diritto [173]
Economia [172]
Filosofia [175]

entropia

Dizionario delle Scienze Fisiche (1996)

entropia entropìa [Der. del ted. Entropie, dal gr. én "dentro" e tropé "trasformazione" e quindi "trasformazione interna"] [TRM] Grandezza che interviene nello studio delle trasformazioni termodinamiche [...] , nei più vari campi, anche non della fisica, per es. nella teoria dell'informazione e perfino microcanonica (v. oltre). ◆ [TRM] E. congiunta: v. termodinamica non lineare dei processi irreversibili: VI 173 d. ◆ [MCS] E. e complessità: v. entropia ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su entropia (3)
Mostra Tutti

Stokes Sir George Gabriel

Dizionario delle Scienze Fisiche (1996)

Stokes Sir George Gabriel Stokes 〈stóuks〉 Sir George Gabriel [STF] (Skreen 1819 - Cambridge 1903) Prof. di matematica nell'univ. di Cambridge (1837); socio straniero dei Lincei (1888). ◆ [MCF] Costante [...] circuitazione: stabilisce una corrispondenza tra la circuitazione di un campo vettoriale e il flusso del rotore del campo concatenato con la linea di circuitazione: v. campi, teoria classica dei: I 470 f. Nella geometria differenziale tale teorema si ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: RADIAZIONE ELETTROMAGNETICA – GEOMETRIA DIFFERENZIALE – VARIETÀ RIEMANNIANE – CAMPO VETTORIALE – LUNGHEZZE D'ONDA
Mostra altri risultati Nascondi altri risultati su Stokes Sir George Gabriel (3)
Mostra Tutti

algebra non commutativa

Enciclopedia della Scienza e della Tecnica (2008)

algebra non commutativa Luca Tomassini Sia F un campo, ovvero un corpo commutativo. Un insieme A è detto F-algebra (o algebra su F) se è uno spazio vettoriale sul campo F (per es., i campi ℚ, ℝ, ℂ dei [...] delle applicazioni lineari di uno spazio vettoriale V (su un campo F) in sé stesso; se V è di dimensione finita applicazioni dell’algebra non commutativa, la teoria delle rappresentazioni lineari dei gruppi e delle algebre su spazi vettoriali ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – APPLICAZIONI LINEARI – SPAZIO VETTORIALE – ALGEBRA LINEARE – ALGEBRE DI LIE
Mostra altri risultati Nascondi altri risultati su algebra non commutativa (4)
Mostra Tutti

rotore

Dizionario delle Scienze Fisiche (1996)

rotore rotóre [Der. di rotazione] [ALG] [ANM] (a) R. di un campo tensoriale: v. tensore: VI 129 d. (b) R. di un vettore: operatore differenziale su un campo vettoriale, detto anche rotazione e rotazionale, [...] : V 647 b. ◆ [ALG] Teorema del r.: è una conseguenza del teorema di Stokes della circuitazione (v. campi, teoria classica dei: I 470 f) e afferma che in un campo di velocità v è rotv=2w, con w velocità angolare, cioè nei punti dove il r. è diverso da ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – FISICA TECNICA – MECCANICA DEI FLUIDI – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su rotore (3)
Mostra Tutti

ombra

Dizionario delle Scienze Fisiche (1996)

ombra ómbra [Der. del lat. umbra] [OTT] Zona della superficie di un corpo illuminato che è oscura in quanto è in posizione tale da non essere raggiungibile dai raggi luminosi (l'o. propria), oppure in [...] sorgente, e una zona di penombra, parzialmente illuminata, luogo dei punti dai quali è visibile soltanto una parte della sorgente o.: tecnica per visualizzare campi aerodinamici: v. aerodinamica sperimentale: I 65 f. ◆ [ALG] Teoria delle o.: parte ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA DEI FLUIDI – OTTICA – ALGEBRA
Mostra altri risultati Nascondi altri risultati su ombra (1)
Mostra Tutti

divergenza

Dizionario delle Scienze Fisiche (1996)

divergenza divergènza [Der. del lat. scient. moderno divergentia, dal part. pres. divergens -entis di divergere (J. Kepler, 1611), formato sul precedente devergere "allontanarsi", comp. di de- e vergere [...] (simb. div oppure come prodotto scalare dell'operatore nabla) che, applicato al vettore di un campo, individua le sorgenti scalari di esso: v. campi, teoria classica dei: I 470 d. ◆ [OTT] Denomin. data alla convergenza negativa di un sistema ottico ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – GEOFISICA – MECCANICA QUANTISTICA – OTTICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su divergenza (3)
Mostra Tutti

nabla

Dizionario delle Scienze Fisiche (1996)

nabla nabla [s.ingl., gr. nábla "arpa" per la forma del simb.] [ANM] Operatore vettoriale, di simb. ∇, definito, in un riferimento cartesiano di versori x₁,y₁,z₁, dalle relazioni: ∇=(∂/∂x)x₁+(∂/∂y)y₁+(∂/∂z)z₁. [...] uno scalare s, pari a ∇s, divergenza e rotore di un vettore v, essendo divv≡∇✄v e rotv≡∇╳v, laplaciano (coincidente con ∇✄∇≡∇2) sia di uno scalare che di un vettore, nonché varie relazioni tra questi operatori: v. campi, teoria classica dei: I 470 e. ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su nabla (2)
Mostra Tutti

biforcazioni, teoria delle

Enciclopedia on line

Capitolo della matematica che studia ogni variazione di tipo qualitativo che si possa riscontrare negli elementi di una famiglia di curve o di superfici o di campi di vettori, ecc., di;pendente da un certo [...] : i punti di b. sono perciò quelli della superficie conica di equazione b2=4ac. Uno dei principali oggetti della teoria è però lo studio delle famiglie di campi di vettori e delle famiglie di traiettorie di equazioni differenziali: in tutti i casi si ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEORIA DELLE FOLIAZIONI – EQUAZIONI DIFFERENZIALI – SISTEMI DINAMICI – PUNTI ISOLATI – CICLO LIMITE
Mostra altri risultati Nascondi altri risultati su biforcazioni, teoria delle (1)
Mostra Tutti

non commutativo

Enciclopedia on line

In matematica, si dice di struttura nella quale sia definita un’operazione che non è commutativa (➔ commutativa, proprietà). Tali strutture hanno assunto un ruolo importante nella caratterizzazione della [...] quali le strutture periodiche in campi magnetici, i modelli di matrici nella teoria delle stringhe ecc. Nel processo , o kählerizzazione, per le equazioni d’onda non lineari e al metodo delle orbite nella teoria delle rappresentazioni dei gruppi. ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA
TAGS: PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG – TEORIA DELLE RAPPRESENTAZIONI – TEORIA DELLE STRINGHE – FISICA QUANTISTICA – ANELLI COMMUTATIVI

Stevin

Enciclopedia on line

〈stëvìn〉 (latinizz. Stevinius o Stevinus, in it. Stevino), Simon, detto Simone di Bruges. -  Matematico fiammingo (n. Bruges 1548 - m. forse Leida o L'Aia 1620). Dette numerosi contributi in vari campi [...] 'introduzione del concetto di metacentro. Oltre a contributi alla teoria delle maree e alla geologia gli si dovono invenzioni relative : l'introduzione (1585) dell'uso sistematico dei numeri decimali; la soluzione approssimata di equazioni numeriche ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: PARALLELOGRAMMA DELLE FORZE – MOTO PERPETUO – METACENTRO – MATEMATICA – BRUGES
1 2 3 4 5 6 7 8 ... 35 ... 40
Vocabolario
campo
campo s. m. [lat. campus «campagna, pianura» poi «campo di esercitazioni, campo di battaglia»]. – Termine che ha assunto (per evoluzione dai sign. principali che già aveva nella lingua d’origine) notevole varietà di accezioni e di usi, rimanendo...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali