• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
Le parole valgono
lingua italiana
219 risultati
Tutti i risultati [3252]
Matematica [219]
Biografie [506]
Temi generali [340]
Economia [301]
Fisica [281]
Diritto [265]
Filosofia [225]
Storia [230]
Medicina [225]
Scienze demo-etno-antropologiche [201]

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] non annodato. Il risultato chiave che sta alla base di una teoria combinatoria dei nodi è il teorema di Reidemeister (v., 1932), è proprio un valore del polinomio bracket del nodo. Possiamo ora descrivere il modello del bracket come ampiezza di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] determinate interamente dai loro valori sui numeri razionali) può essere sviluppata in una maniera semplice e naturale sulla base del suo sistema. Weyl non mostrò però come sviluppare predicativamente le più moderne teorie dell'integrazione (come ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] […] non vi può essere alcun nuovo principio fondamentale nella teoria del moto e dell'equilibrio, che non sia già contenuto nei puntiformi mi e velocità vi l''azione' del moto effettivo assume un valore stazionario rispetto a quelli di tutte le ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] presenta la teoria delle primitive e degli integrali per le funzioni di una variabile reale a valori in uno trascurabile per μ se μ*(f)=0; si spiega il linguaggio di Lebesgue del 'quasi ovunque'. La parte A è detta trascurabile se μ*(A)=0. Si ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] derivate regolari nel piano, esiste una teoria del tutto analoga a quella del caso a una dimensione. Ogni misura una funzione f da X a B e un F∈B*, consideriamo la funzione a valori reali F(f) su X. Diremo che f è integrabile secondo Pettis se, e ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] Ω, dove denota la media. Di conseguenza u non può assumere un valore massimo in un punto interno, a meno che non sia costante. A nel 1971 a opera di Paul Rabinowitz, che applicò la teoria del grado di Leray-Schauder. Esso afferma che nell'ipotesi di ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Equazioni funzionali

Enciclopedia del Novecento (1977)

Equazioni funzionali JJacques Louis Lions di Jacques Louis Lions Equazioni funzionali sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] tipi di problemi con ‛equazioni alle derivate parziali'. Ad esempio, nel caso della teoria del calore, se Ω ⊂ Rn (nei casi pratici: n = 1, 2 tecnico come, ad esempio, quella di ‛distribuzione a valori vettoriali'. Gli spazi di Sobolev Hm(Ω), costruiti ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – TEORIA QUANTISTICA DEI CAMPI – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti

NUMERI

XXI Secolo (2010)

Numeri Umberto Zannier Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] il valore trigonometrico 2cos teoria dei numeri infiniti, definendo i numeri surreali, che stanno ai numeri ordinali un po’ come i numeri reali stanno ai numeri interi. Tornando al contesto dei numeri reali, Cantor mo;strò anche che i punti del ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA

Scienza egizia. Matematica

Storia della Scienza (2001)

Scienza egizia. Matematica Walter Friedrich Reineke Friedhelm Hoffmann Matematica Nel mondo ellenistico, l'antichissimo, venerando e nondimeno meraviglioso Egitto era considerato la culla della scienza. [...] di una formulazione esplicita. Le tecniche e le teorie di calcolo disponibili erano sufficienti a soddisfare le 3)+(1/20)+(1/120). Questa è l'altezza media del solo triangolo". Il valore ottenuto era più accurato di quello che avrebbe dato la formula ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] un dato intero m per certi valori interi di x e y, ossia che l'equazione ax2+bxy+cy2+dx+ey+f =m avesse una soluzione intera x, y ∈ ℤ; questo problema avrebbe portato poi, alla fine del XIX sec., alla creazione della 'teoria del campo di classi'. L ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 14 ... 22
Vocabolario
valóre
valore valóre s. m. [dal lat. tardo (in glosse) valor -oris, der. di valere: v. valere]. – 1. Riferito a persona indica: a. Possesso di alte doti intellettuali e morali, o alto grado di capacità professionale: un uomo, una donna di v., di...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali