• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

sottospazio

Enciclopedia della Matematica (2013)
  • Condividi

sottospazio


sottospazio sottoinsieme E di uno → spazio S, dotato della stessa struttura algebrica e topologica di S, cioè tale che risulti a sua volta uno spazio della stessa natura di S. Tra i sottospazi di uno spazio S di dimensione n vanno inclusi anche i suoi punti e l’intero spazio S. Tali sottospazi sono detti sottospazi impropri o sottospazi banali, mentre tutti gli altri sottospazi, aventi dimensione k, con 0 < k < n, sono detti sottospazi propri. Nell’ordinario spazio euclideo tridimensionale sono sottospazi propri le rette e i piani. In uno → spazio vettoriale Vn, di dimensione n, k vettori v1, v2, ..., vk, linearmente indipendenti, generano un sottospazio di dimensione k. Ogni vettore di tale sottospazio è esprimibile in modo unico (a parte l’ordine) da una combinazione lineare dei vettori v1, v2, ..., vk. L’insieme di tali vettori è detto base del sottospazio. In uno spazio vettoriale Vn, i sottospazi di dimensione n − 1 sono detti → iperpiani e sono rappresentati da equazioni del tipo a0 + a1x1 + a2x2 + ... + anxn = 0. Un sottospazio di dimensione k < n − 1 si ottiene come intersezione di n − k iperpiani linearmente indipendenti ed è rappresentato da un sistema di n − k equazioni di iperpiano tale che la matrice dei coefficienti delle incognite abbia rango n − k.

Vedi anche
autovettore In matematica, a. di una trasformazione lineare T è un vettore A la cui direzione non varia per l’applicazione di T: cioè TA=kA, con k grandezza scalare, autovalore (➔) della trasformazione. funzionale In matematica, variabile y che dipende non da una o più variabili, ma da una funzione f; in simboli: y=F(f). Un f. non è da confondere con una funzione composta (o funzione di funzione): la y è f. di f(x), se la funzione stessa f(x) è concepita come una variabile, e a ogni scelta della funzione f(x) ... reticolo Biologia In biologia cellulare, r. endoplasmatico (o endoplasmico), sistema di cavità delimitate da membrane, presente nel citoplasma di tutte le cellule. È costituito da una membrana formata da un unico foglietto continuo, molto ripiegato, che racchiude un unico sacco chiuso detto lume del r. endoplasmatico ... topologia Matematica Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse. Proprietà topologiche La t., che è oggi un capitolo fondamentale della matematica, in origine si limitava allo studio di aspetti geometrici ...
Tag
  • LINEARMENTE INDIPENDENTI
  • COMBINAZIONE LINEARE
  • STRUTTURA ALGEBRICA
  • SPAZIO VETTORIALE
  • SPAZIO EUCLIDEO
Vocabolario
sottospàzio
sottospazio sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
sopraspàzio
sopraspazio sopraspàzio s. m. [comp. di sopra- e spazio]. – In matematica, è detto s. uno spazio S rispetto a uno spazio S′ che sia contenuto in S (si dice anche che «S′ è un sottospazio di S»).
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali