• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
156 risultati
Tutti i risultati [156]
Matematica [79]
Storia della matematica [37]
Algebra [21]
Fisica [19]
Analisi matematica [15]
Geometria [11]
Fisica matematica [12]
Temi generali [11]
Astronomia [10]
Storia della fisica [10]

intero algebrico

Enciclopedia della Matematica (2013)

intero algebrico intero algebrico se A è un dominio d’integrità e se B è un secondo dominio d’integrità contenente A, allora un elemento b appartenente a B è detto un intero algebrico su A (o più semplicemente [...] −1 + a2bn−2 + ... + an−1b + an = 0. Se ogni elemento di B che è intero su A appartiene ad A, il dominio d’integrità A è detto integralmente chiuso in B. La nozione di intero algebrico generalizza al contesto dei domini d’integrità quella di elemento ... Leggi Tutto
TAGS: INTEGRALMENTE CHIUSO – DOMINIO D’INTEGRITÀ – ELEMENTO ALGEBRICO – POLINOMIO MONICO

ARITMETICA

Enciclopedia Italiana (1929)

Il termine aritmetica fu usato per la prima volta dai pitagorici per distinguere la scienza dei numeri dalla mera pratica del calcolo per mezzo di operazioni elementari, o logistica (λογιστική). Secondo [...] anche β è in K (ϑ) si ha N(α β) = N(α) N(β). Se α, β sono interi di K (ϑ), si dice α divisibile per β se il quoto α : β è intero (algebrico); per questo è necessario (ma non sufficiente, in generale) che N(α) sia divisibile per N(β). La ricerca delle ... Leggi Tutto
TAGS: GRANDEZZA DIRETTAMENTE PROPORZIONALE – DISTRIBUZIONE DEI NUMERI PRIMI – SISTEMI DI EQUAZIONI LINEARI – INTERPOLAZIONE DI LAGRANGE – FUNZIONE RAZIONALE INTERA
Mostra altri risultati Nascondi altri risultati su ARITMETICA (7)
Mostra Tutti

NUMERI, Teoria dei

Enciclopedia Italiana - IV Appendice (1979)

NUMERI, Teoria dei Enrico Bombieri Gli sviluppi recenti della t. dei n. (v. aritmetica: Aritmetica inferiore o teoria dei numeri, IV, p. 370) hanno condotto alla soluzione di problemi fondamentali e [...] anni Baker è riuscito, con l'introduzione di misure di approssimazione dei logaritmi di numeri algebrici, a determinare algoritmi effettivi per trovare tutte le soluzioni intere di un'equazione f(x,y) = 0 di genere1, e per vaste classi di equazioni ... Leggi Tutto
TAGS: ULTIMO TEOREMA DI FERMAT – NUMERO TRASCENDENTE – GEOMETRIA ALGEBRICA – POLINOMIO OMOGENEO – LOGICA MATEMATICA
Mostra altri risultati Nascondi altri risultati su NUMERI, Teoria dei (4)
Mostra Tutti

Gruppi

Enciclopedia del Novecento (1978)

Gruppi GGeorge W. Mackey di George W. Mackey SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] e x2 generano lo stesso ideale principale se, e soltanto se, x1 = wx2, ove w e un unità. Se ℛ è l'anello di tutti gli interi algebrici in un Q(ϑ) e se ϑ è tale che ℛ ammetta una legge di fattorizzazione unica, ogni ideale è principale e la legge di ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI NECESSARIE E SUFFICIENTI – TEOREMA FONDAMENTALE DELL'ALGEBRA – PRINCIPIO DI ESCLUSIONE DI PAULI – LEGGE DI RECIPROCITÀ QUADRATICA

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] F è un anello. In altre parole, la somma, la differenza e il prodotto di interi algebrici di F appartengono ancora a F. Questo anello è chiamato l'‛anello degli interi algebrici' di F ed è indicato con ℴF. L'aritmetica dell'anello ℴF è il principale ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] , il numero delle classi di ideali di Dedekind è finito. È rispetto agli ideali, non rispetto agli interi algebrici, che Dedekind sviluppò la propria aritmetica. Fornendo le definizioni di ideale primo e di moltiplicazione fra ideali, dimostrò ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] rappresentare come prodotto di due polinomi di grado positivo a coefficienti razionali. Se a=1 allora α si definisce intero algebrico. I numeri non algebrici si dicono trascendenti. Già nel 1844 Joseph Liouville aveva dimostrato che se α è un numero ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

numeri algebrici

Enciclopedia della Scienza e della Tecnica (2008)

numeri algebrici Luca Tomassini Numeri complessi (in particolare reali) che siano radici di un polinomio f(x)=anxn+...+a1x+a0 con coefficienti razionali non tutti nulli. Se α è un numero algebrico, [...] radice di un polinomio con coefficienti algebrici è algebrica. Un numero algebrico è detto intero algebrico se tutti i coefficienti del suo polinomio minimo sono interi. Per es., il numero 1+√√_2 è intero algebrico in quanto radice del polinomio x2 ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: POLINOMIO IRRIDUCIBILE – CARDINALITÀ NUMERABILE – NUMERI TRASCENDENTI – NUMERI COMPLESSI – NUMERI INTERI
Mostra altri risultati Nascondi altri risultati su numeri algebrici (2)
Mostra Tutti

integralmente chiuso

Enciclopedia della Matematica (2013)

integralmente chiuso integralmente chiuso in algebra, proprietà di un dominio d’integrità A: se B è un secondo dominio d’integrità contenente A, allora A è detto integralmente chiuso in B se ogni elemento [...] su A appartiene ad A (→ intero algebrico); A è detto integralmente chiuso (o anello normale) se è integralmente chiuso nel suo campo dei quozienti (→ quozienti, campo dei). Un esempio di anello integralmente chiuso è costituito dall’anello Z dei ... Leggi Tutto
TAGS: DOMINIO A FATTORIZZAZIONE UNICA – DOMINIO D’INTEGRITÀ – CAMPO DEI QUOZIENTI – INTERO ALGEBRICO – NUMERI INTERI

ALGEBRICO

Enciclopedia Italiana (1929)

. L'aggettivo "algebrico" viene impiegato in matematica in varî sensi, secondo gli oggetti a cui è riferito. Nel senso lato si dice qualche volta, nella teoria delle equazioni differenziali, che una o [...] a, che soddisfano all'equazione, e che si dicono i coniugati di a. Un numero algebrico si dice intero quando è radice di un'equazione a coefficienti interi col primo coefficiente uguale a 1. Poiché la somma, la differenza, il prodotto e il quoziente ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – TEORIA GENERALE DEI SISTEMI – BASE DEI LOGARITMI NATURALI – EQUAZIONI DIFFERENZIALI – COORDINATE CARTESIANE
1 2 3 4 5 6 7 8 ... 16
Vocabolario
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
irregolarità
irregolarita irregolarità s. f. [der. di irregolare; cfr. lat. tardo irregularĭtas -atis «indisciplina nella condotta»]. – 1. a. Condizione di ciò che è irregolare, nei diversi sign. dell’aggettivo: i. di una procedura, di un possesso; invalidare...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali