• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

fibrato vettoriale

di Luca Tomassini - Enciclopedia della Scienza e della Tecnica (2008)
  • Condividi

fibrato vettoriale

Luca Tomassini

Un fibrato {B,X,F,τ} con spazio totale B, spazio di base X e proiezione canonica τ:B→X è detto fibrato vettoriale se: (a) la fibra tipica X è uno spazio vettoriale di dimensione finita e la sua topologia relativa (come sottoinsieme di B) coincide con la sua topologia come spazio vettoriale; (b) ogni banalizzazione locale φα:τ−1(x)⊂B→Uα×F⊂X×F (dove x∈X) è un’applicazione lineare. Un fibrato complesso, per es., è un fibrato vettoriale con fibra tipica ℂ{[ (n∈ℕ). Il più semplice esempio di fibrato complesso con base X è il prodotto cartesiano B=X×ℂ{[ (detto fibrato banale) e a partire da esso è possibile costruire fibrati vettoriali non banali come segue. Consideriamo C*-algebra C(X,M{[(ℂ)) delle funzioni continue dallo spazio X (supposto compatto, di Hausdorff e connesso) a valori nello spazio M{[(ℂ) delle matrici n×n a valori complessi con

formula

dove la norma a secondo membro è una qualunque norma su M{[(ℂ)). Una funzione p∈C(X,M{[(ℂ)) è un idempotente o proiettore (ovvero p2=p) se e solo se ogni p(x) lo è in M{[(ℂ). Un tale idempotente definisce un fibrato vettoriale {B,X,F,τ} su X con fibra su x uguale a τ−1(x)=p(x)ℂ{[. Più interessante è la validità della proposizione inversa: dato un fibrato vettoriale complesso {B,X,F,τ} su uno spazio compatto di Hausdorff connesso X e fibra tipica ℂ{[, esistono un intero m>n e un idempotente p∈C(X,M{[(ℂ)) tali che B⊂X×ℂ{[, con τ−1(x)=p(x)ℂ{[. L’idea della dimostrazione è costruire un nuovo fibrato vettoriale {B′,X,F′τ′} su X tale che B⊕B′ (la somma diretta è definita come somma diretta delle fibre per ciascun x∈X) sia triviale, ovvero equivalente a X×ℂ{[. Anche nel caso di fibrati vettoriali si definisce lo spazio ΓΓdelle sezioni continue: esso è costituito di funzioni continue su X a valori nello spazio vettoriale F ed è dunque a sua volta uno spazio vettoriale con le usuali operazioni di somma tra funzioni e moltiplicazione per scalari. Su di esso, si ottiene un’azione π∮ su Γ dell’algebra C(X) delle funzioni continue da X in ℂ definita da π∮(f)Ψ(x)=f(x)Ψ(x) con f∈C(X), Ψ(x)∈Γ. Lo spazio Γ può allora essere considerato un modulo su C(X). Per questa via è possibile ottenere il celebre teorema di Serre-Swan, che determina una corrispondenza biunivoca tra fibrati vettoriali complessi (su spazi compatti di Hausdorff connessi) e particolari moduli sull’algebra C(X).

→ Geometria differenziale

Vedi anche
spazio fibrato In matematica, concetto introdotto nel 1935 da H. Whitney in relazione a problemi di topologia e geometria delle varietà. Ha dato luogo a una teoria che ha avuto un enorme sviluppo, specialmente in connessione agli spazi vettoriali (A. Grothendieck, M.F. Atiyah, F. Hirzebruch) e ha condotto alla costruzione ... compatto Matematica Uno spazio (o un insieme di punti) si dice c. per successioni, o brevemente c., se ogni successione formata da infiniti punti scelti in esso ammette un punto di accumulazione anch’esso appartenente allo spazio, o all’insieme. Così, per es., la circonferenza è un insieme c., mentre non lo ... modulo Architettura Misura convenzionale che stabilisce il rapporto fra le varie parti di un edificio e una unità base di misura. Nell’architettura dell’età classica greca e romana l’unità base della composizione architettonica solitamente è il diametro della colonna nella sua parte più bassa (imoscapo); da ... applicazione Matematica Il concetto di a. è una generalizzazione del concetto classico di funzione (➔ corrispondenza). Si parla di a. di un insieme P in un insieme Q, quando tra i due si stabilisce una corrispondenza del tipo seguente: a ogni elemento di P corrisponde un ben determinato elemento di Q, mentre un elemento ...
Categorie
  • GEOMETRIA in Matematica
Tag
  • CORRISPONDENZA BIUNIVOCA
  • GEOMETRIA DIFFERENZIALE
  • APPLICAZIONE LINEARE
  • PRODOTTO CARTESIANO
  • SPAZIO VETTORIALE
Vocabolario
fibrato
fibrato agg. [dal lat. fibratus]. – Che presenta fibre o più genericam. venature: steli di marmo fibrati come vegetali (D’Annunzio). In araldica, attributo delle foglie con fibre di smalto diverso.
vettoriale
vettoriale agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali