• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

misura di Wiener

di Luca Tomassini - Enciclopedia della Scienza e della Tecnica (2008)
  • Condividi

misura di Wiener

Luca Tomassini

Una misura di probabilità sullo spazio C([0,1],ℝ) delle funzioni continue a valori reali sull’intervallo chiuso [0,1] definita come segue. Siano 0⟨t1⟨...⟨tν≤1 punti arbitrari di [0,1] e A1,...,Aν sottoinsiemi boreliani della retta reale ℝ (unioni arbitrarie o intersezioni finite di intervalli chiusi). Indichiamo infine con C(t1,...,tν;A1,...,Aν) l’insieme di tutte le funzioni x∈C([0,1],ℝ) tali che x(tκ)∈Aκ, k=1,...,n. Se gli Aκ sono intervalli chiusi in ℝ allora gli insiemi C(t1,...,tν;A1,...,Aν) sono detti cilindrici: gli stessi Aκ sono le basi di questi ‘cilindri’. La misura di Wiener μϬ è definita dalla formula

formula

dove p(t,x)=1/√__2πt e−χ2/2τ. La misura può essere poi estesa alla σ-algebra dei sottoinsiemi boreliani di C([0,1],ℝ) generata dai C(t1,...,tν;A1,...,Aν). Sia ora F:C([0,1],ℝ)→ℝ un funzionale lineare a valori reali misurabile (nel senso di Lebesgue) rispetto alla misura μϬ. In maniera analoga alla procedura utilizzata per definire dalla misura di Lebesgue il corrispondente integrale, si definisce allora l’integrale di Wiener

formula

Misura e integrale di Wiener hanno costituito il primo esempio di estensione della teoria dell’integrazione a spazi di dimensione infinita e furono introdotti da Norbert Wiener nel 1923 nel quadro dei suoi studi sul moto browniano. La funzione p(t,x) assume qui il ruolo di densità di probabilità per la posizione x di una particella a un fissato tempo t e la quantità

formula

appare come la probabilità che, nel suo moto, agli istanti t1,...,tν la particella stessa si trovi all’interno degli insiemi A1,...,Aν.

→ Probabilità

Vedi anche
Henry-Léon Lebesgue Matematico francese (Beauvais, Oise, 1875 - Parigi 1941), prof. all'univ. di Parigi, socio straniero dei Lincei (1925). Uno dei maggiori esponenti dell'indirizzo critico nella teoria delle funzioni di variabile reale, iniziato da K. Weierstrass. Le sue ricerche sulle teorie della misura e dell'integrazione ... numero reale Ogni numero relativo razionale o irrazionale. I numeri r. sono dati, perciò, da tutti i possibili sviluppi decimali sia limitati sia illimitati, e questi ultimi sia periodici sia sprovvisti di periodo. Due differenti ordini di problemi suggerirono ai matematici l’opportunità di introdurre i numeri reali. ... inclusione Botanica Sostanza o soluzione complessa racchiusa nei vacuoli delle cellule, detta anche incluso cellulare; può essere liquida, come le goccioline di oli, o solida, come la drusa . CHIMICA Composto di i. Tipo di composto chimico derivante dall’imprigionamento di molecole di una sostanza (molecole ospiti) ... grandezza fisica G. fisica Qualsiasi ente suscettibile di una precisa definizione quantitativa, quindi di misurazione, che viene introdotto allo scopo di consentire una descrizione quantitativamente precisa di fenomeni fisici e la traduzione in equazioni matematiche di problemi della fisica. G. dimensionata è ...
Categorie
  • ANALISI MATEMATICA in Matematica
  • STATISTICA E CALCOLO DELLE PROBABILITA in Matematica
Tag
  • TEORIA DELL’INTEGRAZIONE
  • DENSITÀ DI PROBABILITÀ
  • MISURA DI LEBESGUE
  • FUNZIONALE LINEARE
  • FUNZIONI CONTINUE
Vocabolario
miṡura
misura miṡura s. f. [lat. mensūra, der. di mensus part. pass. di metiri «misurare»]. – 1. a. Il valore numerico attribuito a una grandezza, ottenuto ed espresso come rapporto tra la grandezza data e un’altra della stessa specie assunta...
Disforia di genere
disforia di genere loc. s.le f. Condizione di intensa e persistente sofferenza causata dal sentire la propria identità di genere diversa dal proprio sesso anatomico. ♦ «Come ha appena detto la compagna transgender...». I delegati di fabbrica...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali