• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
111 risultati
Tutti i risultati [111]
Matematica [62]
Algebra [18]
Storia della matematica [21]
Analisi matematica [14]
Fisica [11]
Geometria [10]
Fisica matematica [8]
Biografie [7]
Astronomia [6]
Informatica [4]

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] è costituito dalla logica formale e dalla teoria degli insiemi. Le strutture sono classificate in ordine di complessità crescente. È così che all'inizio sono esaminate le strutture algebriche e topologiche, in seguito collegate. La retta dei numeri ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] venire il punto di vista che considera i coefficienti di un'equazione o di un sistema di equazioni algebriche come coordinate dell'insieme di punti che queste descrivono, e le equazioni come una traduzione delle relazioni di incidenza nel linguaggio ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] si è esercitata a lungo in molti campi; un punto tra i tanti è l'idea di considerare insieme geometria algebrica e teoria algebrica dei numeri. Discipline apparentemente separate per il fatto che le varietà sono definite su campi, mentre le questioni ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

L'Ottocento: astronomia. La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi

Storia della Scienza (2003)

L'Ottocento: astronomia. La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi Craig Fraser Michiyo Nakane La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi La teoria di Hamilton-Jacobi, [...] per l'invenzione di una nuova struttura algebrica: i quaternioni. Alcune delle sue idee fisiche supponga che le variabili a1,…,am, b1,…,bm siano collegate a un nuovo insieme di variabili α1,…,αm, β1,…,βm tramite equazioni della forma seguente: dove ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA

NUMERI

XXI Secolo (2010)

Numeri Umberto Zannier Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] in tante questioni (anche da Bertrand Russell nel suo celebre paradosso sugli insiemi che contengono sé stessi). Dal momento che era possibile mostrare che i numeri algebrici si possono invece enumerare in una lista (per es., le frazioni razionali ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] di misure rappresentative. Una condizione che assicura l'unicità è quella che A sia un'algebra di Dirichlet. Tali algebre sono caratterizzate dalla proprietà che l'insieme delle parti reali Rf delle funzioni di A sia un sottoinsieme denso di Cℝ(X ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Computazionali, metodi

Enciclopedia della Scienza e della Tecnica (2007)

Computazionali, metodi Alfio Quarteroni I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] valore di ∣g(x)∣ nell'intervallo [a,b], g essendo una generica funzione continua. Abbiamo denotato con ℙn l'insieme dei polinomi algebrici di grado inferiore o uguale a n. Il teorema di Weierstrass, tuttavia, non è costruttivo: esso non permette di ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMA DI EQUAZIONI, LINEARI – METODO DEGLI ELEMENTI FINITI

Pacioli, Luca

Il Contributo italiano alla storia del Pensiero: Economia (2012)

Luca Pacioli Daniela Parisi Personaggio dai molteplici talenti, Luca Pacioli, formatosi all’aritmetica commerciale e iniziata parallelamente l’attività mercantile, cambiò presto la priorità dei suoi [...] contiene una raccolta di giochi e problemi matematici e algebrici, più ampia di tutte quelle compilate fino allora, le società di mercanti, di coloro che sono «gionti insiemi», distinguendole tra compagnie fondate sulla base del conferimento di ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: FRANCESCO DI GIORGIO MARTINI – GUIDOBALDO DA MONTEFELTRO – MARCO VITRUVIO POLLIONE – LEON BATTISTA ALBERTI – PIERO DELLA FRANCESCA
Mostra altri risultati Nascondi altri risultati su Pacioli, Luca (6)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] propri zeri: dove b1,…,bn−1 sono le radici di un'equazione algebrica a coefficenti razionali zn−11s1zn−21…1sn−150 e z5u−15ps. Gli zeri è estesa a tutti gli ideali interi a di Am, cioé all'insieme degli ideali frazionari di k primi con m, e χ è un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

logica

Dizionario di filosofia (2009)

logica I vocaboli ἡ λογική (τέχνη), τὰ λογικά si stabilizzarono nel significato di «teoria del giudizio e della conoscenza» in un ambiente protostoico, pur conservando λογικός per tutta la grecità il [...] A. Henkin, A.I. Malcev, R.M. Robinson); la teoria degli insiemi (E. Zermelo, A. Fraenkel, Bernays, J. Von Neumann, Gödel, della ricorsività (S. Kleene, Church, Turing, E. Post); l’algebra universale (L. Löwenheim, M.H. Stone, P.R. Halmos, Tarski ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su logica (9)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 12
Vocabolario
àlgebra
algebra àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali