• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

teorema di esistenza degli zeri

di Luca Tomassini - Enciclopedia della Scienza e della Tecnica (2008)
  • Condividi

teorema di esistenza degli zeri

Luca Tomassini

Sia f una funzione continua a valori reali su un intervallo chiuso [a,b] della retta reale ℝ e sia c un numero reale compreso tra f(a) e f(b). Il teorema di Bolzano, noto anche come teorema di Cauchy, stabilisce allora che esiste un punto x0∈[a,b] tale che f(x0)=c. In particolare, se f(a)〈0 e f(b)>0 (o viceversa), esiste un punto x0 tale che f(x0)=0. In questa forma, tale risultato è noto con il nome di teorema di esistenza degli zeri. La dimostrazione può essere realizzata a partire dal principio degli intervalli inclusi di Bolzano-Weierstrass, secondo il quale una successione di intervalli In tale che In+1⊂In per ogni n∈ℕ ha un’intersezione non vuota. Basterà infatti dividere l’intervallo [a,b] in due metà e osservare che almeno in una delle due f assume valori strettamente maggiori e minori di c. Scegliendola e iterando la procedura, otteniamo nel limite il punto x0 desiderato. Dal teorema di Bolzano segue che l’immagine di un intervallo tramite una funzione continua è anch’essa un intervallo. Esso è spesso utilizzato per determinare intervalli nei quali una funzione ha necessariamente degli zeri, ma può essere considerato anche uno dei principali teoremi di esistenza dell’analisi matematica classica. Il teorema può inoltre essere generalizzato al caso di spazi topologici: una funzione continua f:X→ℝ definita su uno spazio topologico connesso X che assuma due valori distinti assume anche ogni valore tra di essi. L’immagine di X è dunque ancora una volta un intervallo. L’ipotesi di connessione per X è qui essenziale.

→ Equazioni differenziali: problemi non lineari

Vedi anche
limite Livello massimo, al di sopra o al di sotto del quale si verifica un fenomeno. fisica Angolo limite In ottica, nel passaggio di un raggio da un mezzo a un altro con indice di rifrazione assoluto inferiore (per es., per la luce visibile, dall’acqua all’aria) l’angolo di incidenza sulla superficie di ... successione diritto 1. Diritto privato Fenomeno squisitamente giuridico per il quale un soggetto subentra ad altro soggetto in un complesso di rapporti giuridici patrimoniali ovvero in un rapporto giuridico patrimoniale singolo, restando oggettivamente inalterata la loro natura. Siffatta successione di una persona ... anàlisi infinitesimale infinitesimale, anàlisi (o càlcolo) Parte della matematica (detta anche semplicemente analisi matematica) i cui metodi e sviluppi sono fondati sull'operazione di passaggio al limite. Suoi iniziatori sono considerati nel 17° sec. I. Newton e G.W. Leibniz, tuttavia ha avuto il suo sviluppo solo in seguito ... numero reale Ogni numero relativo razionale o irrazionale. I numeri reale, numero sono dati, perciò, da tutti i possibili sviluppi decimali sia limitati sia illimitati, e questi ultimi sia periodici sia sprovvisti di periodo. ● Due differenti ordini di problemi suggerirono ai matematici l’opportunità di introdurre ...
Categorie
  • ALGEBRA in Matematica
  • ANALISI MATEMATICA in Matematica
Tag
  • EQUAZIONI DIFFERENZIALI
  • ANALISI MATEMATICA
  • FUNZIONE CONTINUA
  • RETTA REALE
  • BOLZANO
Altri risultati per teorema di esistenza degli zeri
  • Bolzano, teorema di
    Enciclopedia della Matematica (2013)
    Bolzano, teorema di detto anche teorema di esistenza degli zeri di una funzione, in analisi, stabilisce che una funzione continua ha almeno uno zero reale in un intervallo ai cui estremi essa assume segni opposti: ƒ: [a, b] → R, continua e tale che ƒ(a) · ƒ(b) < 0 ⇒ Ǝx ∈ (a, b) tale che ƒ(x) = 0.
Vocabolario
teorèma
teorema teorèma s. m. [dal lat. tardo theorēma, gr. ϑεώρημα (propr. «ricerca, meditazione», der. di ϑεω-ρέω «esaminare, osservare»)] (pl. -i). – 1. Nella cultura classica e medievale, la «visione» sensibile o intellettiva e il relativo...
eṡistènza
esistenza eṡistènza s. f. [dal lat. tardo exsistentia, der. di exsistĕre «esistere»]. – 1. L’esistere, l’esserci: l’e. di Dio, dell’anima, degli uomini, del mondo, delle cose; affermare, negare, provare l’e. di Dio, dell’anima, ecc.; accertare...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali